THE ARC STANDARD RASTER PRODUCT SPECIFICATION

(ASRP)

Produced and issued under the direction of the Director General of Military Survey MOD (UK) on behalf of the Digital Geographic Information Working Group (DGIWG).

Edition 1.2 March 1995

ASRP Edition 1.2 March 1995

THIS PAGE IS INTENTIONALLY BLANK

TABLE OF CONTENTS

<u>Page</u>

Table of Contents	i
List of Figures	iii
List of Annexes	iv
List of Enclosures	iv
Notice of Users	v
Record of Amendments	v
Foreword	vi
Authority	vi
Purpose and Scope	vi
Application	vi
Amendments	vi
Distribution	vi
Proposed Changes	vii
Technical Queries	vii
Security	vii
Custodian	vii
National Representative/Points of Contact	vii
Acronyms and Abbreviations	Х

<u>Page</u>

1.0	Sco	ре		1-1
2.0	Refe	erences		2-1
3.0	Ger	General Information		
	3.1	Descri	ption of ARC Standardised Raster Products (ASRP)	3-1
		3.1.1	Standardised Raster Graphics	3-1
		3.1.2	Equal ARC-Second Raster Chart (ARC) Projection	3-1
	3.2	The A	RC System	3-1
		3.2.1	General	3-1
		3.2.2	Zones	3-1
		3.2.3	Polar Zones	3-1
		3.2.4	Storage	3-1
		3.2.5	Overlap	3-2
	3.3	Datum	IS	3-2
	3.4	Accura	acy Requirements	3-2
		3.4.1	Horizontal and Vertical Accuracy	3-2
	3.5	Colou	Definition and Coding	3-3
		3.5.1	Colour Representation	3-3
		3.5.2	Use of Repromat	3-7
	3.6	Insets	and Outsets	3-7
		3.6.1	Insets	3-7
		3.6.2	Outsets	3-8
		3.6.3	Treatment of External Insets	3-8
		3.6.4	Treatment of Internal Insets	3-8
		3.6.5	An Alternative: Additional geodata layer	3-8
		3.6.6	Treatment of Outsets	3-8

<u>Page</u>

	3.7	.7 Marginalia			
	3.7.1 Legend Images - General			3-8	
		3.7.2 Legend Images			
		3.7.3	Legend Image Examples	3-8	
	3.7.4 Supplementary Text			3-10	
4.0	Excha	inae Sp	ecification	4-1	
	4.1 Overview			4-1	
	42	Overvi	ew of Raster Data Structure	4-1	
	1.2	421	Image description	<u>4</u> -1	
		4.2.1	Title Structure	<u>4</u> 1	
		423	Sub Block Ordering	4-3	
		4.2.3	Sub Block Zero Fill	4 J 1-3	
		4.2.4	Title Index Man Description	4-3 1-3	
		4.2.5	ISO 8211 Conformance	4-0	
	1 2	4.2.0 Seen l	isoo	4-3 1 E	
	4.3		Divel Count Subfield	4-0 1 E	
		4.3.1	Pixel Could Sublield	4-5 4 E	
		4.3.2		4-5	
		4.3.3		4-5	
		4.3.4	Colour Coded Images	4-5	
	4.4	Genera	al Requirements	4-6	
		4.4.1	Field Use	4-6	
		4.4.2	Decimal Mark	4-6	
		4.4.3	DIGEST Specific Data Syntax	4-6	
		4.4.4	Interpretation of Binary Fields	4-6	
5.0	Logica	al Struc	ture	5-1	
	5.1	Logica	I Description of Data Subsets	5-1	
		5.1.1	Header Data Subset	5-1	
		5.1.2	Geo Data Subset	5-1	
	5.2	File St	ructures	5-2	
		5.2.1	Transmittal Header File	5-2	
			Transmittal Description Record	5-2	
			Security and Update Record	5-2	
		5.2.2	General Information File	5-2	
			General Information Record	5-2	
			Dataset Description Record	5-3	
		5.2.3	Geo Reference File	5-3	
			Geo Reference Record	5-3	
		524	Source File	5-3	
		0.2.1	Source Record	5-3	
			Legend Record	5-4	
			Metric Support Record	5-4	
			Supplementary Text Record	5-5	
		525		5-5	
		5.2.5		5-5	
				5-5	
				0-0 E 0	
Vertical Accuracy Record			0-C		
		5.2.6		5-6	
~ ~	F		Image Record	5-6	
6.0	.0 Exchange Media		eqia	6-1	
	6.1	Purpos	Se	6-1	
	6.2	Chara	cter Representation	6-1	

6.3	Forms of Media	6-1
	6.3.1 Magnetic Tape	6-1
	6.3.2 Optical Disk	6-3
	6.3.3 Other Media	6-4
6.4	File Naming Convention for use with Media Labels	6-4

LIST OF FIGURES

<u>Figure</u>	<u>F</u>	<u>'age</u>
3-1	ARC System Zone Layout	3-4
3-2	An ASRP Main Raster Image (MRI) divided into component Zone Distribution Rectangles (ZDRs) (Northern Hemisphere)	3-5
3-3	A Multi-Zoned ASRP Divided into Component Zone Distribution Rectangles (ZDRs) (Northern Hemisphere)	3-6
3-4	An Example Index Diagram	3-9
3-5	An Example Elevation/Depth (Bathymetric) Tint Diagram	3-9
3-6	An Example Glossary	3-10
3-7	An Example Feature Symbol Table	3-10
4-1	Sub Block and Pixel Organisation within an Image	4-2
4-2	ASRP Image Title Structure	4-4
4-3	Title Index Map Examp0le with Null Tiles	4-4
5-1	Logical Data Set	5-1
5-2	A Seamless Four-Map Main Raster Image (MRI)	5-7
5-3	MRI for Source Graphics with Outsets	5-7
5-4	MRI for Source Graphic with Inset	5-8
5-5	MRI for Source Graphics on Different Datums	5-8

LIST OF ANNEXES

- A ISO 8211 Implementation Specifications.
- B ARC Coordinate Transformations.

LIST OF ENCLOSURES

The following Enclosures are extracts from DIGEST (Reference 1):

ASRP ENCLOSURE	DIGEST <u>REFERENCE</u>	DESCRIPTION
1	Part 4 Annex B	Attribute and Value Codes. NOTE: Only those FACC codes which are used in this specification are included here (eg CDP, NST). This is therefore an incomplete copy of the DIGEST Annex.
2	Part 3 Clause 7	Grid Codes.
3	Part 3 Clause 8	Ellipsoid Codes.
4	Part 3 Clause 9	Datum Codes.
5	Part 3 Clause 6	Projection Codes and Parameters.
6	Part 3 Clause 13	Use of CIE Values.
7	Part 3 Clause 11	Country Codes.
8	Part 3 Clause 12	Codes for Media Recording Standards.
9	Part 3 Clause 10	Units of Measure Codes.
10	Part 2 Annex D	Volume Transmittal Form.

NOTE. These enclosures are included for "completeness of documentation" purposes. Responsibility for their maintenance lies with the relevant DIGEST custodian nation.

NOTICE TO USERS

This international specification for the ARC Standard Raster Product (ASRP) has been designed to state the content and format of one of DGIWG's standard raster products. This specification now forms the baseline from which both system developers and National Survey organisations can plan their development and production activities.

Research with all aspects of DGI is continuing within the DGIWG forum and any subsequent potential changes will be subject to formal change control procedures.

RECORD OF AMENDMENTS			
No.	Date	Entered By	Remarks

FOREWORD

<u>AUTHORITY</u>

1. This document is issued under the authority of the Digital Geographic Information Working Group. DGIWG comprises a group of international defence mapping agencies which is charged with encouraging the use of its standards in both the civil and defence worlds. Current members of DGIWG are Belgium, Canada, Denmark, France, Germany, Italy, Netherlands, Norway, Spain, the UK, and the USA.

PURPOSE AND SCOPE

2. Digital Geographic Information has evolved into one of the primary and most essential elements of many system applications both for the Mapping, Charting and Geodesy (MC&G) Community and for many other users. This document provides the necessary data structure, file organisation, format and capture specifications to enable the production of seamless raster data sets, ARC Standard Raster Products (ASRP), on a common world-wide datum. Other forms of this same basic file organisation and format have been created to enable the exchange of other types of MC&G raster data not explicitly for use in seamless data sets.

3. The data will be available on a common world wide reference datum of World Geodetic System 1984 (WGS 84).

APPLICATION

4. This specification applies to all activities involved in the capture, processing and dissemination of ASRP data.

AMENDMENTS

5. Amendments to this specification will be the responsibility of the custodian, on behalf of and in agreement with DGIWG, and will be issued as necessary, through National Points of Contact, to known document holders.

DISTRIBUTION

6. International distribution of this specification will be the responsibility of DGIWG. Within each DGIWG country this will be through the relevant national representative (point of contact). National points of contact can distribute freely outside DGIWG nations.

PROPOSED CHANGES

7. Any proposed changes or comments should be keyed to the specific page, paragraph and line of the text. Reasons should be provided for each comment to ensure understanding and complete evaluation. Comments should be addressed to the original Point of Contact who will then forward the details to the custodian nation. DGIWG will ensure that all such comments are processed through formal change control procedures.

TECHNICAL QUERIES

8. Any queries with regard to the content or application of this specification should be addressed to the original Point of Contact.

<u>SECURITY</u>

9. This product specification is unclassified but the copying of this document is prohibited without the authority of the original Point of Contact.

CUSTODIAN

10. Military Survey MOD (UK) is the custodian of this specification:

Ministry of Defence Military Survey Elmwood Avenue Feltham Middlesex TW13 7AH United Kingdom

Telephone:	0181 818 2206
International:	+44181 818 2206
FAX:	0181 818 2246

NATIONAL REPRESENTATIVES/POINTS OF CONTACT

11. The national representatives/points of contact are:

- Belgium IGN Abbaye de la Cambre 13 B 1050 Brussels Belgium
- Canada Director of Geographic Operations National Defence Headquarters MGen G Pearkes Building Ottawa K1A 0K2 Canada

ASRP Edition 1.2 March 1995

Denmark Chief of Defence Attn: Geographic Officer Army Engineer School Farum Kaserne DK-3520 Farum Denmark France Ministere de la Defense Centre Geographique Interarmee 14 Rue Saint Dominique 00450 Armees France Germany AMT FUR MILITARISCHES GEOWESEN Frauenberger Str 250 Mercator Kaserne D 5350 Euskirchen Germany Italy IGMI Via C. Battisti 10 50100 Firenze Italy Netherlands Topographic Service **PO Box 115** 7800 AC Emmen The Netherlands Norway Forsvarets Karttjeneste Bygn-64 Akershus Oslo Mil/Akershus 0015 Oslo 1 Norway SHAPE Chief Geographic Officer **Operations Division (OME)** SHAPE BFPO 26 or APO 09055 or 7010 SHAPE, Belgium Spain Servicio Geografico del Ejercito Dario Gazapo Num 8 28024 Madrid Spain

- UK Ministry of Defence Military Survey (Geo Commitments Group) Elmwood Avenue Feltham Middlesex TW13 7AH United Kingdom
- US HQ Defense Mapping Agency 8613 Lee Highway Fairfax, VA 22031-2137 USA

ACRONYMS AND ABBREVIATIONS

ADRG	ARC Digitized Raster Graphics
ANSI	American National Standards Institute
ARC	Equal Arc-Second Raster Chart System
ASCII	American National Standard Code for Information Interchange
ASRP	ARC Standard Raster Product
CHUM	CHart Update Manual
CIE	Commission Internationale de l'Eclairage (International Commission on Illumination)
CPI	Characters Per Inch
DGI	Digital Geographic Information
DGIWG	Digital Geographic Information Working Group
DIGEST	Digital Geographic Information Exchange Standard
FIPS	Federal Information Processing Standards
FIPS PUB	Federal Information Processing Standards Publication
GCR	Group-Coded Recording
ISO	International Organization for Standards
MC&G	Mapping, Charting and Geodesy
PE	Phase-Encoded
SRG	Standardized Raster Graphics
UPS	Universal Polar Steographic Projection
USRP	UTM/UPS Standardized Raster Products
UTM	Universal Transverse Mercator Projection
WGS 84	World Geodetic System 1984

1.0 SCOPE.

1.1 Digital Geographic Information (DGI) has evolved into one of the primary and most essential elements of many information system applications both for the Mapping, Charting and Geodesy (MC&G) Community and for other, diverse users. This document provides the necessary data structure, file organisation, format and capture specifications to enable the exchange of seamless raster data sets, ARC Standardised Raster Products (ASRP), on a common world-wide datum. Other forms of this same basic file organisation and format have been created to enable the exchange of other types of MC&G raster data not explicitly for use in a seamless data sets.

THIS PAGE IS INTENTIONALLY BLANK

2.0 REFERENCES

1. Digital Geographic Information Working Group, "Digital Geographic Information Exchange Standards (DIGEST)":

- Part 1: General Description; Edition 1.2, January 1994.
- Part 2: Theoretical Model, Exchange Structure, and Encapsulation Rules; Edition 1.2, January 1994.
- Part 3: Codes, Parameters, and Tags; Edition 1.2, January 1994.
- Part 4: Feature and Attribute Coding Catalogue (FACC); Edition 1.2, January 1994.

2. DMA Technical Report (DMATR) 8350.2, "DoD World Geodetic System 1984: Its Definition and Relationship with Local Geodetic Systems"; 2nd Edition; 1 September 1991.

3. Defense Mapping Agency Standard Printing Color Catalog for Mapping, Charting, Geodetic Data and Related Products, January 1987

4. European Computer Manufacturer's Association (ECMA), "Standard for Data Interchange on Read-Only 120 mm Optical Data Disks (CD-ROM) ECMA/TTC31/87/47, September 1987. (DRAFT)

5. ISO 646 - "Information processing -- ISO 7 -bit coded character set for information interchange", Second Edition, 1983.

6. ISO 1001 - "Information Processing -- File Structure and Labelling of Magnetic Tapes for Information Interchange Ed.2", 1986

7. ISO 2022: - "Information Processing -- ISO7 Bit and 8 Bit Coded Character Sets -- Code Extension Techniques Ed. 3", 1986.

8. ISO 3788 - "Information Processing -- 9 Track. 12,7 mm (0.5 in) Wide Magnetic Tape for Information Interchange recorded at 63 cpmm (1600 cpi), Phase Encoded. Ed. 1", 1976.

9. ISO 5652 - "Information processing -- 9 track 12.7 mm (0.5 in.) wide magnetic tape for information interchange formats and recording, using group coding 246 cpmm (6,250 cpi)"

10. ISO 8211 - "Information processing - Specification for a data descriptive file for information interchange", 1985

11. ISO 9660 - "Information Processing -- Volume and File Structure of CD-ROM for Information Interchange. Ed. 1", 1988.

12. STANAG 2215- Edition 4 - Evaluation of Land Maps. Dated 19 December, 1983

13. STANAG 3671 Edition Designation System for Land Maps, Aeronautical Charts and Military Geographic Documentation, Edition 2

14. STANAG 3716 Map Series Numbering, Edition 1.

15. DLMS Accuracy Working Group, "Accuracy Determination Method".

16. ISO 8859 -1— Information processing — 8-bit single-byte coded graphic character sets — Part 1: Latin alphabet No. 1, First Edition 1987-02-15

17. ISO 6937 — Information Processing — Coded character sets for text communication, Ed. 1, 1983.

18. ISO/IEC/10646 -1 — Information technology - Universal Multiple-Octet Coded Character Set (UCS), Part 1: Architecture and Basic Multilingual Plane, First edition 1993-05-01

3.0 GENERAL INFORMATION

3.1 Description of ARC Standardised Raster Products (ASRP).

3.1.1 Standardised Raster Graphics (SRGs) are digital replicas of graphic products. To digitally replicate the multiple colours present on many graphic products, each multicolour graphic is scanned and digitally separated into red, green, and blue components or colour-coded layers. The result can be several image bands that when combined, provide a multicolour digital replica of the original graphic product. The total format of a graphic including margin, border, and legend areas are normally scanned at a resolution of 100 microns or less.

3.1.2 The Equal <u>ARC-Second Raster Chart</u> (ARC) system is the projection and coordinate system for all ASRP data. The design objective of ARC is to provide graphic data in a virtually seamless manner and permit direct display in a nearly conformal presentation. The ASRP consists not only of the transformed graphic data but also a record that contains datum shift and projection parameters with which users can transform ASRP back to the source graphic's datum or projection; a graphic information record that contains textual information about the source graphics; graphical representations of legend images; and an optional supplementary text field that contains textual descriptions of items depicted on the original graphic.

3.2 THE ARC SYSTEM.

3.2.1 ASRP data consists of colour-coded images with 100 microns (254 lines per inch) sample size, trimmed at the graphic's neat line and transformed to the Equal Arc-Second Raster Chart/Map (ARC) system frame of reference. Data on the ARC system will be maintained as a world-wide seamless data base of scanned graphic data on World Geodetic System 1984 (WGS 84). The ARC structure consists of 18 overlapping latitudinal zones into which the data are divided - 9 Northern Hemisphere zones, including a Polar zone; and 9 Southern Hemisphere zones, including a Polar zone; and 9 Southern Hemisphere zones, including a Polar zone (see Figure 3-1).

3.2.2 Each zone is subdivided into an array of tiles, the number of which varies depending on the zone and the scale of the scanned image. Each tile represents 12.8 mm square (approximately .5 by .5 inch) of a hardcopy graphic image for all scales and geographic locations. Each pixel nominally represents 100 microns square of hardcopy graphic data.

3.2.3 Polar zones are square arrays of tiles overlaid mathematically on a polar azimuthal equidistant projection. The use of the equidistant projection is only an intermediate mathematical step to simplify the formula and establish a simple relationship between a pixel and its geographic coordinates.

3.2.4 An ASRP geo data subset will contain one or more geodata files. Within each (non-legend image) geo data file, data will be on the same zone reference system which includes overlap areas into the adjoining zone.

3.2.5 Images overlapping zone boundaries into the next higher numbered zone will include an overlap of 1024-1151 pixels into that zone (see Figures 3-2 and 3-3). The overlap is between 8 and 9 whole tiles.

3.3 DATUMS.

The vertical datum for ASRP data is the same as the vertical datum of the source graphic. The horizontal datum is the World Geodetic System 1984. The constants for the WGS 84 ellipsoid (extracted from Reference 2) are:

- a = 6378137.0 meters
 b = 6356752.3142 meters
- **e²** = 0.00669437999013

A set of polynomial coefficients is provided with the data so that a user may shift back to the original geodetic system. These coefficients are derived from Reference 2.

Currently, 7-term cubic polynomials are used. The polynomial coefficients are derived from representative control points available in both systems, using a fitting process such as least-squares. The control points are obtained using a geodetic datum transformation such as those described in Reference 2.

3.4 ACCURACY REQUIREMENTS

Raster data will be captured and processed in a way which satisfies the following accuracy requirements.

Raster data collected from source graphics at scales of 1:100,000 or smaller may retain the horizontal accuracy of the original source graphic, since the inaccuracy added as a result of digitization is generally less than the error tolerances built into the original source graphics' horizontal accuracy figure.

3.4.1 Horizontal accuracy for Raster data collected from source graphics at scales larger than 1:100,000 may be determined after the image has been rectified (if needed) using the method detailed below:

3.4.1.1 Coordinates of control points are determined in terms of the nominal sampling interval times the reciprocal scale of the graphic (i.e. the ground distance defined by the number of pixels from the origin of the cartographic image). The Standard Error (at 90% confidence limit) of their deviations, from the cartometrically derived coordinates, is calculated for both X and Y. These are compounded with "Source Graphic's Horizontal Accuracy Value" (AAH) to form the total "Raster Horizontal Accuracy Value" (HAV) as follows:

$$HAV = (AAH^{2} + X^{2}_{ERROR} + Y^{2}_{ERROR})^{1/2}$$

An example is for a 1: 50,000 scale map where:

- AAH = 50 metres
- The sampling interval is 100 microns
- The Standard Error at 90% confidence limit is 200 microns (i.e. 2 pixels) which gives $2 \times 100 \times 50,000 = 10$ meters in both X and Y.

This would give a total HAV = $(50^2 + 10^2 + 10^2)^{1/2} = 52$ metres

Ninety per cent of the points per graphic will fulfil the above condition.

3.5 COLOUR DEFINITION AND CODING.

3.5.1 Colour representation is in the form of colour-code. Each colour-code is stored in a colour look-up table together with its CIE (x, y, Y) reference (see Enclosure 6) and nominal RGB intensity values. Where a colour-code represents a transition colour which is a known additive of two or more other coded colours then a mathematical expression defining the mixture will be given in the Quality Record subfield FRM (Section A.2.4). Where given, the expression will be of the following form

Where: P is the proportion CC is the colour-code (i.e. label CCD)

n

and
$$\sum_{i=1}^{i} P_i = 1$$

Figure 3-1. ARC System zone layout.

Two ZDRs required to cover MRI

Figure 3-2. An ASRP Main Raster Image (MRI) divided into component Zone Distribution Rectangles (ZDRs) (Northern Hemisphere)

Example :

If the colour that is coded 5 (CC5) is an additive mixture of 0.25 of CC3 and 0.75 of CC6 then the equation for CC5 will be :

either 0.25*(3) + 0.75*(6) or 0.75*(6) + 0.25*(3)

The use of the equation is to allow easy modification of the colours for display purposes. For example, if it is necessary to alter the displayed colour for colours 3 and for 6 then the changes to the related colour 5 can be directly computed as follows:

Where R3, G3, B3 and R6, G6, B6 are the desired signal strengths/ luminosities of the colours 3 and 6 respectively then:

> R5 = 0.25*R3 + 0.75*R6 G5 = 0.25*G3 + 0.75*G6 B5 = 0.25*B3 + 0.75*B6

<u>Note</u> : The CIE stimuli (X,Y,Z) may be substituted for R,G,B in the above equations giving:

X5	=	0.25*X3 + 0.75*X6
Y5	=	0.25*Y3 + 0.75*Y6
Z5	=	0.25*Z3 + 0.75*Z6

Where given the CIE reference (x,y,Y) then:

$$X = \frac{x \cdot Y}{y}$$

$$Y = Y$$

$$Z = \frac{Y}{y}$$

$$(1 - x - y)$$

3.5.2 If repromat is used, each layer (band) will be assigned a standard colour-code which matches the printing colour for which this repromat stands.

3.6 INSETS AND OUTSETS.

3.6.1 <u>Insets.</u> An inset is a separate map positioned within the neatline of a larger map. There are two types:

a. <u>External Inset.</u> This is an area geographically outside a sheet but included therein for convenience of publication, usually at the same scale.

b. <u>Internal Inset.</u> This is a portion of a map or chart, usually representing a highly congested area, in which a decongested version of the area is depicted in the same sheet, but in a different area of the sheet from the congested version. Internal insets may be at a different scale from the scale of the host graphic.

3.6.2 <u>Outsets.</u> An outset occurs where part of a map protrudes beyond the neatline, causing a break in the neatline. Every such protruding part is called an outset.

3.6.3 <u>Treatment of External Insets.</u> Any external insets which occur on the source graphic will not be described in the Source File. The inset is shifted to its correct geographic location in the zone image and replaced in the main map by null pixels (see Figure 5-4). This method can only apply to **external** insets displayed in the same coordinate system as the main map.

3.6.4 <u>Treatment of Internal Insets.</u> Any internal insets which appear on the source graphic will be described in the Source File (described in Section 5.2.4). The INSET field provides the necessary information to define a local transformation of the row and column number into geographic or cartographic coordinates. This method can only apply to **internal** insets displayed in the same coordinate system as the main map.

3.6.5 <u>An Alternative: Additional Geo Data Layers.</u> The inset is extracted and held as another geo data layer within the same dataset. This method can only apply to data sets displayed in the same coordinate system as the main map. These could be either **internal** or **external** insets.

3.6.6 <u>Treatment of Outsets.</u> When the detail contained in the outset is duplicated on the adjacent map sheet, then it is trimmed to the neatline. If it does not appear on the adjacent map sheet, it is included as an extension of the main image and the bounding polygon is adjusted to enclose the outset (see Figure 5-3).

3.7 MARGINALIA.

3.7.1 Legend images, which provide valuable information on the source graphic but are outside the neat lines, will be provided in separate data files (Sections 5.2.4 and 5.2.6). Legend images are typically a minimum size to encompass the type of images described below. The intention is that legend images are capable of being displayed in less than a display screen full of data, and therefore the image on the source may be subdivided for display convenience.

3.7.2 A legend image has no relationship to any geographic location. Each legend image is contained in its own file and is related to the source graphic by the LEGEND_IMAGE_RECORD in the SOURCE_FILE.

3.7.3 Some examples of legend images are described below.

(a) <u>Index Diagram.</u> The index diagram shows the approximate geographic position of the graphic and its relationship to other graphics in the region (Figure 3-4).

(b) <u>Elevation/Depth (Bathymetric)Tint Diagram.</u> The elevation/depth tint diagram is a multi-colour graphic depicting the colours and/or tints used to represent different elevation or depth bands on the printed map/chart (Figure 3-5).

c) <u>Glossaries</u>. Glossaries are brief lists of foreign geographical terms appearing on the graphic with their translated or transliterated equivalents (Figure 3-6).

d) <u>Feature Symbols</u>. Landmark feature symbols are used to indicate navigationally-prominent entities (Figure 3-7).

ONC sheet identification K-3 World Area Code identifiers 692 World Area Code identifiers are also carried in the body of this chart by corner ticks and numbers.

Figure 3-4. An example Index Diagram

Figure 3-5. An example Elevation/Depth (Bathymetric) Tint Diagram

GLOSSARY
Sir
pahr
Eché
ioséréhill
loserehill
laclake
Massifmountains
fayostream
iontsmountains
Daadi
Plateauplateau
Souli
Vallćewadi

Figure 3-6. An example Glossary

Figure 3-7. An example Feature Symbol table

3.7.4 Supplementary Text Data.

Supplementary text appears on many maps and charts, most often to provide textual data associated with special annotations. This may appear in the margin or on the back of the chart, and will be provided in a separate record in the appropriate Source File on the ASRP volume (Section A.2.4). In addition, supplementary text may be used to capture items such as convergence tables, extended copyrights, etc.

4.0 EXCHANGE SPECIFICATION.

4.1 OVERVIEW OF SPECIFICATION.

This specification is designed to enable the exchange of ASRP and has been structured to include:

- a) Volume contents
- b) Header Data Subset
- c) Specific graphic details:
 - i) Identification/descriptive details
 - ii) Data Set coverage and organisation
 - iii) Source information
 - iv) Security aspects/classification
 - v) Data accuracy statements
 - vi) Graphic data content
- d) Exchange media

Derived by reference to the DGIWG Digital Geographic Information Exchange Standard (DIGEST, Reference 1), this specification identifies and details those criteria that are necessary to permit the exchange of data in a form that is direct, informative, and above all else, complete. Some flexibility has been allowed in the areas of data field sizes, colour representation, and the ordering of the data to enable full benefit to be gained in data density and in run length encoding as required. Alternatively, some rules have been fixed to ensure conformity of product and hence, ease of data receipt and handling by the recipient.

4.2 OVERVIEW OF THE RASTER DATA STRUCTURE.

4.2.1 An image may be separated into one or more image bands as depicted in Figure 4-1. The image bands will be formatted into Sub Blocks. Each pixel value is represented by a maximum of eight bits. The upper left corner of each Sub Block is the origin of the numbering sequence of lines and pixels (samples). Each Sub Block consists of 128 lines of 128 pixels (i.e. 128 pixels square).

4.2.2 Each tile in the image has the property that its upper-left (0,0) pixel is at a distance from the ARC system origin for its zone which is an integral multiple of 128 pixels in each of the row and column directions. This is brought about by the definition of the image origin (the upper-left pixel of the upper-left tile).

In a non-polar zone, the image origin must be an exact multiple of 128 pixels from the Equator and an exact multiple of 128 pixels from the Prime Meridian.

In either polar zone, the image origin must be an exact multiple of 128 pixels from the X axis and an exact multiple of 128 pixels from the Y axis.

The precise image origin coordinates are defined in Annex B.

Figure 4-1. Sub Block and Pixel organisation within an Image

4.2.3 The ordering of Sub Blocks has the first Sub Block appearing in the very most Northwest corner and the last Sub Block in the very most Southeast corner. An example is as follows: From west to east, there will be **N** number of Sub Blocks. From north to south, there will be **M** number of Sub Blocks. Begin each sequence from the upper left corner of a graphic. That position will be (1), and Sub Block numbers are incremented by 1 along the row to **N**. Therefore the Sub Block to the east will be (2). The Sub Block to the south of Sub Block (1) will be Sub Block (**N**+1). The Sub Block in the Southeast corner will be Sub Block (**N** x **M**). Pixel values within a Sub Block are recorded in the same order.

4.2.4 Zero fill (or null fill, or Pad) is defined as the colour-code zero. Zero fill may be used within a Sub Block at the beginning, middle or end of each line. If the actual number of samples per image line is not an integer multiple of 128, zero fill will be added to produce the next integer multiple of 128 samples. Zero fill may be used preceding the first line or following the last line of actual image data in a Sub Block. If the actual number of lines is not an integer multiple of 128, zero fill will be added to produce the next integer multiple of 128 samples. Therefore for these reasons, zero fill for a zone image may be on any or all edges. (See Figure 4-2)

4.2.5 Full tiles of zero (null) pixels may be omitted from an image. Tiles (Sub Blocks) containing non-zero (non-null) pixels are placed into the image file in sequential order but without leaving space for omitted tiles. In this case a rectangular array of integers, the Tile Index Map (M (c,r)), is used to indicate which tiles are present. There is one row of integers in the tile map for each row of tiles in the image, and each integer in the row corresponds with a tile in the row of tiles in the image. The value of each entry M (c,r) indicates whether or not tile (c,r) of the image is present in the image file, and for a tile which is present, tells the tiles sequence position or starting byte address, in the image file. M (c,r) is defined by:

M(c,r) = 0 or null	if tile (c,r) is omitted
M(c,r) = (sequence number > 0)	if tile (c,r) is present
or start byte address)	

If the image is compressed (i.e. Run Length Encoded) then the start byte address of each tile is the byte number within the image data (SCN field) numbering from one (the first byte). If the image is uncompressed (i.e. not Run Length Encoded) then it is the tile sequence position in the image file and when M (c,r) > 0 the value (M (c,r)-1) indicates how many tiles of stored data in the image file must be skipped to access the tile in column c, row r of the image (see Fig 4-3). The Tile Index Map is present only when tiles have been omitted from the image file or optionally the data is Run Length Encoded. A flag is provided to indicate if the tile map is present.

4.2.6 The files of an ASRP data exchange must conform to the specifications of ISO 8211. Annex A specifies files, records, fields and their contents. That Annex also specifies the field tags and subfield labels to be utilised. Under all circumstances data types must agree with the data and conform to ISO 8211.

Note: The subfield values NUS, NUL, NLS and NLL are image coordinates given in the DATA_SET_PARAMETERS Field (SPR).

The subfield values LSO and PSO are image origin coordinates given in the GENERAL_INFORMATION Field (GEN) for each zone (including any pad pixels) in the Main Raster Image (MRI).

Tile Index Map showing the tile sequence on Storage Media.

Zone Image Tiles

Image File on Storage Media

Figure 4-3. Tile Index Map example with null tiles

4.3 SCAN LINES.

Each scan line contains the pixel data for a line of pixels in a Sub Block. Because of the repetitive nature of pixel/raster data, the PIX subfield contains two implicit elements which are fixed length binary integers with no separators between them. Each scan line starts on a byte boundary, any remaining bits in the final byte are ignored (i.e. padding with any combinations of 0's and 1's). The implicit elements of the PIX Subfield have the logical form as depicted below, where each run of pixels is composed of two elements:

- Pixel count
- Pixel value

Pix Count 1	el Value 1	Pix Count 2	el Value 2	*	*	*	Pix Count 'n'	el Value 'n'	
run 1 run 2			2			-	run '	n"	

4.3.1 The Pixel Count subfield defines the number of pixels with the value of the following Pixel Value. The sum of all the Pixel Counts in a scan line of a Sub Block (tile) will be equal to 128 pixels (i.e. Wrap-around of pixel runs to following scan lines is not allowed since pixels would not be physically adjacent).

n
PNC =
$$\sum_{i=1}^{n}$$
 (pixel count)_i = 128
(where PNC represents the number of pixels per scanline)

4.3.2 The lengths of the binary integer subfields are defined (in bits) in the General Information Record (GIN) of the General Information File by the following attributes:

PCB = Size of Pixel Count element in Bits(ie 0 or 4 or 8).PVB = Size of Pixel Value element in Bits(ie 0 or 8).

4.3.3 If PCB is set to 0, then there is no count subfield and the value of the count is assumed to be one in all cases and the scan line structure reduces to an uncompressed form as follows:

Value	Value	*	*	*	Value
1	2				120

4.3.4 In the case of colour-coded images separated into bands, each containing only two colours (e.g. black and white, or brown and transparent), then attribute PVB can be set to 0 (zero) and the scan line reduces to a string of count elements as follows:

Count 1	Count 2	*	*	*	Count 'n'

PNC

The convention used is that the first count in this scan line refers to the colour defined for the 'off' state, which is the subfield "WS2" in the GENERAL_INFORMATION_FILE. This element count may therefore be zero. Subsequent count elements alternate in the colour they apply to. As before, the sum of the Pixel Counts will be equal to 128 pixels.

4.4 GENERAL REQUIREMENTS.

4.4.1 <u>FIELD USE</u> When a field is present, all subfields are mandatory. Where information is not available, or not applicable:

- fixed-format subfields will be filled with ASCII spaces (i.e. character position 2/0 as defined in ISO 646).
- variable-width subfields will have a null value (ie consist solely of the delimiter).

4.4.2 <u>DECIMAL MARK</u> The decimal mark in all numeric representation will be the FULL STOP (i.e. character position 2/14 as defined in ISO 646).

4.4.3 <u>DIGEST SPECIFIC DATA SYNTAX</u> Data items having DIGEST specific syntax (e.g. dates) will be coded according to the applicable Section, Appendix or Annex of Reference 1. Relevant enclosures from that document are included at the end of this specification.

4.4.4 <u>INTERPRETATION OF BINARY FIELDS</u> The bits in a byte are identified by b_8 , b_7 , b_6 , b_5 , b_4 , b_3 , b_2 , b_1 , where b_8 is the highest order bit and b_1 is the lowest order bit. For binary fields representing scanlines, the bits will be sequenced highest order to lowest order. Thus when PCB = 4 and PVB = 0 then bits b_8 to b_5 will be valued first, followed by bits b_4 to b_1 . Note that when PCB = 4 and PVB = 8, pixel values will span alternate byte boundaries subject to the restrictions in paragraph 4.3.

5.0 LOGICAL STRUCTURE

ASRP data transfers are composed of the Transmittal Header File (THF) which occurs once and one or more data sets, each of which consist of the Header Data Subset and the Geo Data Subset. Information about the volume security, number of data sets on the volume (optional), and the volume number will be present in the ISO media label, in accordance with the standards described in Section 6. The logical view of these two data subsets is explained below. The THF will be described in Section 5.2.1 below (see Figure 5-1).

DATA SET

Figure 5-1. Logical Data Set

5.1 LOGICAL DESCRIPTION OF DATA SUBSETS

5.1.1 HEADER DATA SUBSET

The Header Data Subset is a logical construct composed of the following:

1.	A General Information File	Occurrence:	Once per geo data set
2.	A Geo Reference File	Occurrence:	Once per geo data set
3.	A Source File	Occurrence:	Once per source (several sources
4.	A Quality File	Occurrence:	Once per geo data set

5.1.2 GEO DATA SUBSET

The Geo Data Subset is a logical construct defined as a collection of digital information representing either physical and cultural characteristics of the earth's surface (which is called the Main Raster Image or MRI); or legend information (which is called the raster Legend Image). The Geo Data Subset is a logical construct composed of the following:

A Geo Data File	Occurrence: One file per zone image (noting that
	there may be more than one zone image per MRI).

5.2 FILE STRUCTURES

5.2.1 TRANSMITTAL HEADER FILE

The TRANSMITTAL_HEADER_FILE occurs only once on each transmittal and for serial media is located at the beginning immediately following the volume label. It contains a general description of the contents of the Transmittal.

The TRANSMITTAL_HEADER_FILE consists of two records with the fields as shown below.

TRANSMITTAL DESCRIPTION Record

001 RECORD_ID Field. Identifies the record.

VDR TRANSMITTAL_HEADER Field. Provides information about the originator of the transfer, relevant media standard, and other information pertinent to the transfer.

FDR DATA_SET_DESCRIPTION Field. Contains information about the geographic extent, identification, and structure of each data set in the transfer.

SECURITY AND UPDATE Record

001 RECORD_ID Field. Identifies the record.

QSR SECURITY_AND_RELEASE Field. Provides information about the security classification of the transfer as a whole.

QUV UP_TO_DATENESS Field. Provides information regarding the ASRP specification edition to which this transfer conforms.

5.2.2 GENERAL INFORMATION FILE

The GENERAL_INFORMATION_FILE contains information pertaining to formatting, sequencing and file organisation which is helpful for the user and machine reading of the file. The file also includes other general information about the actual content of the Data Set File.

The GENERAL_ INFORMATION_ FILE contains two record types with the fields as shown below.

<u>GENERAL INFORMATION Record</u> (Repeated for each zone in the dataset)

001 RECORD_ID Field. Identifies the record.

DSI DATA_SET_ID Field. Gives information about the Geo Data Sub-set identification.

GEN GENERAL_INFORMATION Field. Gives information about the Geo Data Subset content.

GEN GENERAL_INFORMATION Field. Gives information about the Geo Data Subset content.

SPR DATA_SET_PARAMETERS Field. Gives information which provides parameters to interpret the Geo Data Subset.

BDF BAND_ID Field. Gives information about each individual band in a raster image. The order in which the colour bands are recorded in this field is the order they must appear in the Geo_Data_File.

TIM TILE_INDEX_MAP Field. Contains information regarding Sub blocks/tiles (see section 4.2.5 for usage criteria).

DATASET DESCRIPTION Record

001 RECORD_ID Field. Identifies the record.

DRF DATASET_DESCRIPTION Field. Contains information on the number of accuracy subregions, zone images, and source graphics in the dataset.

5.2.3 GEO REFERENCE FILE

The GEO_REFERENCE_FILE occurs only once.

The GEO_REFERENCE_FILE contains one record with the fields as shown below.

GEO REFERENCE Record

001 RECORD_ID Field. Identifies the record.

GEP GEO_PARAMETERS Field.

5.2.4 SOURCE FILE; (Repeated as necessary, once per source document)

The SOURCE_FILE provides information about source documents only to which the data set file refers. A source document is usually a single map or chart from which the image or part of an image was derived. If this file is repeated the sources will normally be from the same map series.

The SOURCE_FILE contains four records with the fields as shown below.

SOURCE Record

001 RECORD_ID Field. Identifies the record.

SGF SOURCE_SUMMARY Field. Identifies the number of supplementary text records, legend images and insets from each source graphic.

SOR SOURCE Field. Provides information on the source(s) used or referenced to create the data contained in the data set file.

MAG MAGNETIC_INFORMATION Field. Provides Magnetic information on a given source. The subfields will be repeated if more than one set of magnetic information applies for a source. Magnetic variation is the sum of Convergence angle and GM angle. Therefore the annual rate of change is the same for magnetic variation as for GM Angle.

RCI BOUNDING_POLYGON_COORDINATES Field. Lists the coordinates of the source polygon.

PRR PROJECTION_FIELD. Provides information about the map projection used in the Source Data.

QSR SECURITY_AND_RELEASE Field. Provides information about the security and releasibility of the source to which it refers).

INS INSET Field. Provides information about the relative and absolute coordinates of the inset. The field will be repeated if there is more than one inset.

CPY COPYRIGHT Field. A free text field which contains applicable copyright information for the source graphic.

<u>LEGEND Record</u> (Optional. Repeat as required)

001 RECORD_ID Field. Identifies the record.

LGI LEGEND Field. Provides information on the legend information captured to permit an easier interpretation of the source to which it relates.

SPR DATA_SET_PARAMETERS Field. Provides parameters to interpret the Legend Image Data.

TIM TILE_INDEX_MAP Field. Contains information regarding Sub blocks/tiles (see section 4.2.5 for usage criteria).

METRIC SUPPORT Record

Refer to Annex B for the math model equations which utilise the coefficients and normalisation constants given in the fields.
001 RECORD_ID Field. Identifies the record.

NCD NORMALIZATION_CONSTANTS Field. Provides constants that are used in applying the coefficients in the Source Datum Coefficients Data Field to compute geographic coordinates relative to the source datum geographics from ARC system geographic coordinates.

SDC SOURCE_DATUM_COEFFICIENTS_DATA Field. Provides coefficients that are used in conjunction with the normalisation constants to compute geographic coordinates relative to the source datum geographics from ARC system geographic coordinates.

MPC MAP_PROJECTIONS_COEFFICIENTS_DATA Field. Provides coefficients that are used to compute the map projection from geographic coordinates given on the source datum.

SUPPLEMENTARY TEXT Record (Optional

001 RECORD_ID Field. Identifies the record.

SUP SUPPLEMENTARY_TEXT Field. Provides free format text for a variety of purposes including alternative for media descriptions.

5.2.5 QUALITY FILE

The QUALITY_FILE gives information about the whole Geo Data Subset quality. It contains three records as shown below.

QUALITY Record:

001 RECORD_ID Field. Identifies the record.

QSR SECURITY_AND_RELEASE Field. Provides security classification, handling and release information).

QUV UP_TO_DATENESS Field. Provides information about currency of the data set file.

COL COLOUR_CODE_ID Field. Gives red, green, blue values each averaged over pixels scanned from uniform intensity colour reference samples intended for colour coded processing.

QOI OTHER_QUALITY_INFORMATION Field. Provides information defining specific descriptors related to data quality.

HORIZONTAL ACCURACY Record (Repeat as necessary)

001 RECORD_ID Field. Identifies the record.

ASH HORIZONTAL_ACCURACY Field. Provides information about the area of horizontal accuracy delineated by the bounding polygon (see RCI below).

RCI BOUNDING_POLYGON_COORDINATES Field. Provides the geographic coordinates (latitude and longitude) of the polygon which delineates the accuracy region of the Geo Data Subset.

VERTICAL ACCURACY Record (Repeat as necessary)

001 RECORD_ID Field. Identifies the record.

ASV VERTICAL_ACCURACY Field. Provides information about the area of vertical accuracy delineated by the bounding polygon (see RCI below).

RCI BOUNDING_POLYGON_COORDINATES Field. Provides the geographic coordinates (longitude and latitude) of the polygon which delineates the accuracy region of the Geo Data Subset.

5.2.6 RASTER GEO DATA FILE

A RASTER_GEO_DATA_FILE of the Geo Data Subset provides the actual data (pixels) of a raster image.

Note: There is one RASTER_GEO_DATA_FILE per zone for the main raster image (including insets within the same zone) and possibly several RASTER_GEO_DATA_FILEs for legend images. (Figures 5-2, 5-3, 5-4, and 5-5 are examples of main raster images). A RASTER_GEO_DATA_FILE contains one or more records as follows:

IMAGE Record

001 RECORD_ID Field. Identifies the record.

PAD PADDING Field. Optional, to be used to pad the IMAGE Record so that the following PIXEL Field can start at the beginning of a physical block on the transfer media if desired. The field contains sufficient characters including the field terminator to achieve this result.

SCN PIXEL Field. Consists of a string of bytes which should be considered to be subdivided into logical subfields (i.e. not ISO 8211 subfields) in the manner described in Section 4.3.

Figure 5-2. A seamless four-map Main Raster Image (MRI).

Figure 5-3. MRI for source graphics with outsets.

An MRI formed by a map and its inset. The inset is an external inset at the same scale as the main map. The inset is placed at the correct geographic area in the ASRP image, and the inset area on the main graphic filled with zero (null) pixels.

Figure 5-4. MRI for source graphic with inset.

Four maps in a Main Raster Image (MRI). Maps 1,2, and 3 are on the same datum, while map 4 is on a different datum. The difference between the two datums causes a gap in the MRI. The size of the gap depends on the datums and scale involved. The larger the scale, the larger the gap (in pixels).

6.0 EXCHANGE MEDIA.

<u>6.1 PURPOSE.</u> The aim of this standard is to reduce the difficulty of exchanging information between different users and different computing systems. Use of the standards in the following paragraphs will facilitate the exchange of digital data.

<u>6.2</u> CHARACTER REPRESENTATION. Two types of character encoding are defined in this standard. Basic Text is used for all text subfields which are alphanumeric identifiers, labels etc. or must be in ASCII only. It makes use of the ISO 646 International Reference Version standard which corresponds to ASCII. A General Text format is used for all text fields that may contain descriptions or names expressed in any language. Four lexical levels of alphabetic repertoire of General Text characters are defined (Lexical Level 0 corresponds to Basic Text).

- 0 Primary ASCII text (ISO 646)
- 1 Extended ASCII (including accents for Western European Latin alphabet based languages ISO 8859 Part 1 (Latin Alphabet 1))
- 2 Full Latin alphabet text ASCII (all accents, diacritical marks and special characters for Latin alphabet based languages (ISO 6937 repertoire))
- 3 Universal Character Set (Base Multilingual plane of ISO 10646) (note: 2 bytes per character)

6.3 FORMS OF MEDIA

6.3.1 MAGNETIC TAPE.

Magnetic tape volumes containing data interchange files shall conform to ISO 1001, level 3, with one fixed length media record per physical block.

6.3.1.1. <u>PHYSICAL BLOCK SIZE</u>. The block size for this product is 8,192 (8 bit) bytes (i.e. 65,536 bits). The completion of a block, if necessary, from the end of specified-recorded information should be by use of (5/E) characters.

6.3.1.2. <u>RECORD STRUCTURE</u>. Only fixed length records will be used, and these will be equal to the physical block size or a whole subdivision of it. The ISO 8211 file of DDR and DR records will be treated as a continuous string of bytes spanning, without separators or padding, the fixed length records and blocks of the magnetic tape. Any unused bytes in the last magnetic tape record of the file shall be filled with (5/E) characters.

6.3.1.3. <u>PHYSICAL RECORDING ALTERNATIVES</u>. There are three physical recording alternatives:

- 6,250 GCR Defined in FIPS PUB 50 which adopts ANSI X3.54-1976 (ISO 5652).
- 1,600 PE Defined in FIPS PUB 25 which adopts ANSI X3.39-

1973 (ISO 3788).

• 8 Millimetre — Defined in ANSI X3.202-1978.

The preferred density is 6250 cpi for 9 track tape and 2.3 Gigabytes for 8 mm tapes. Other densities are permitted as required (e.g., 1,600 PE).

6.3.1.4 <u>RECORDED LABELS</u>. Magnetic tapes will have labels recorded as defined in FIPS PUB 79 which adopts ANSI X3.27-1978 (ISO 1001). Option labels defined in this standard may be used by particular implementations as desired, but must only contain data that may be ignored by the receiver, with the exception of the user volume label (UVL1).

Volume Header Label one (VOL 1) and User Volume Label one (UVL1) will be present and will contain the information as follows:

First Volume Header Label (VOL 1):

Entity Name	<u>Definition</u>	<u>ISO 100</u> <u>a</u>	<u>1 Byte Position (BP)</u> nd field name
Volume ID	ID for this specific volume	5 to 10 -	Volume identifier
Security Classification	Security Classification of this volume	11 - Voli	ume Accessibility
	T = TOP SECRET S = SECRET C = CONFIDENTIAL R = RESTRICTED U = UNCLASSIFIED		
<u>User Volume Label One</u>	<u>(UVL1):</u>		
Sequence Number	Sequential number of this volume within the volume set (transmittal)	5 to 7	Reserved for implementation use
Transmittal ID	Unique ID for the transmittal (volume set) to which this volume belongs	8 to 37	Reserved for implementation use
Number of Data Sets	Number of Data Sets on, or starting on, this volume (may be left blank)	38 to 40	Reserved for implementation use

Notes:

1. All fields shall be a-characters, even the numeric fields are numeric character fields.

2. The 'Number of Data Sets' field may be left blank. It is suggested that for Classified data that this field can be completed by leaving sufficient empty space on the magnetic tape to ensure completion of a known number of Data Sets before the physical 'End of Tape Mark'.

3. The 'Security Classification' of individual files may be defined by setting byte position (BP) 54 of the 'First File Header Label' to T, S, C, R or U as defined above for the Volume Label.

6.3.1.5 Except by bilateral agreement between exchanging parties, the ISO 1001 definition of an 8 bit/byte will be adopted.

6.3.2 OPTICAL DISK.

6.3.2.1 <u>CD-ROM INTERCHANGE</u>. CD-ROM volumes shall conform to ISO 9660 and may use an 'Extended Attribute Record' in any of the files in which case the 'Record format' (BP 79) shall be = 0. The ISO 8211 records shall span the media records without further demarcation. The unused portion of the last block shall be padded with characters (5/E). Supplementary labels defined in this standard may be used by particular implementations as desired, but must only contain data that may be ignored by the receiver. The information is defined as follows:

Primar	y Volume	Descriptor:

Entity Name	Definition	<u>ISO 9660</u> ar	<u>) Byte Position (BP)</u> Id field name
Volume ID	ID for this specific volume	41-72	Volume identifier
Sequence Number	Sequential number of this volume within the volume set (transmittal)	125-128	Volume sequence number
Transmittal ID	Unique ID for the transmittal (volume set) to which this volume belongs	191-318	Volume set identifier
Number of Data Sets	Number of Data Sets on, or starting on, this volume	884-887	Application Use
Security Classification	Security Classification of this volume:	888	Application Use
	T = TOP SECRET S = SECRET C = CONFIDENTIAL R = RESTRICTED U = UNCLASSIFIED		

Note: The first three fields shall be recorded according to ISO 9660. The 'Number of Data Sets' shall be recorded according to paragraph 7.2.3 of ISO 9660 and the 'Security Classification' shall be a d-character (Annex A of ISO 9660).

6.3.2.2 CLASSIFICATION AT THE FILE LEVEL. Where present the classification of a file shall be defined by the first character in the system user area at the end of the directory record:

T = TOP SECRET S = SECRET C = CONFIDENTIAL R = RESTRICTED U = UNCLASSIFIED

6.3.2.3. Except by bilateral agreement between exchanging parties, the ISO 9660 definition of an 8 bit/byte will be adopted.

6.3.3 OTHER MEDIA

Other media will be addressed as the need arises.

6.4 FILE NAMING CONVENTIONS FOR USE WITH MEDIA LABELS

The TRANSMITTAL HEADER FILE name is always

"TRANSH01.THF"

All other file names conform to the following rules :

The purpose of this set of rules is to provide a mechanism to identify those files, which together comprise a single data set. Each file label will be of the form

ZZZZZDD.XXX, where:

"ZZZZZ" are six alphanumeric characters which uniquely identify the data set to which the file belongs

"DD" are two alphanumeric characters which identify the occurrence of the file type within the data set

"XXX" are three characters which must be selected from the sets below. For Header Data Subset files, the following are defined:

XXX	<u>File Type</u>
GEN	General Information File
GER	Geo Reference File
SOU	Source File
QAL	Quality File

For the Geo Data Subset files, use:

IMG	Main Raster Image
Lcc	Raster Legend Image (where 'cc' is the number assigned to the image's source graphic)

An example of the use of this structure is depicted below:

NOAMER01.SOU

This example defines a SOURCE_FILE which is part of a data set uniquely identified with NOAMER. If the data set contains more than one source file, the file name will be the same except that at least one of the characters, "0" or "1", must be changed.

THIS PAGE IS INTENTIONALLY BLANK

ANNEX A — ISO 8211 IMPLEMENTATION SPECIFICATIONS

<u>INDEX</u>

A.1	Specif	fication of ISO 8211 Exchange File Sets	A-1
	A.1.1	Specification of Exchange Set Content	A-2
	A.1.2	ISO 8211 Data Field Description	A-3
A.2	SO 82	211 Implementation	A-5
	A.2.1	Transmittal Header File	A-6
	A.2.2	General Information File	A-8
	A.2.3	Geo Reference File	A-10
	A.2.4	Source File	A-11
	A.2.5	Quality File	A-18
	A.2.6	Raster Geo Data File	A-20
A.3	Backw	vard Compatibility	A-21
	A.3.1	Transformation Functions and their C Implementation	A-21
	A.3.2	Transformations from ASRP 1.0	A-25
	A.3.3	Transformations from ADRG	A-28
A.4	Exam	ples of ISO 8211 Structures	A-32
	A.4.1	Examples of Transmittal Header File	A-32
	A.4.2	Example of General Information File	A-33
	A.4.3	Example of Geo Reference File	A-34
	A.4.4	Example of Source File	A-35
	A.4.5	Example of Quality File	A-37
	A.4.6	Example of Raster Geo Data File	A-38

A.1 SPECIFICATION OF ISO 8211 EXCHANGE FILE SETS

An ISO 8211 exchange set is usually a large data structure which must be specified in great detail. The following manner of specification is intended to enable a specification in a concise yet detailed manner.

This Annex contains specifications for the implementation of ASRP as ISO 8211 interchange files. The specifications include the data structures and data descriptions for the following:

- 1. the files of the ASRP transmittal file set,
- 2. the records and fields of each file,
- 3. the subfields of each field.

The first two items are specified as ordered, rooted fields with an explicit statement of the required or permitted subtrees. The third item is specified as the field descriptions of the component files. The details of the specification format are given in the next Section.

A.1.1 THE SPECIFICATION OF EXCHANGE SET CONTENT

Note: The following notation is in Backus Naur Form (BNF)

The structural model for a ISO 8211 exchange set is an ordered rooted tree. The general notation for the model is:

<tree root> <r>-<subtree>

where <tree root> is the root of the tree structure <r> is the repetition factor of the subtree, <subtree>.

In the usual manner of trees, each subtree type may comprise the root of further subtrees. The complete specification of an exchange set comprises the following generic subtrees:

```
<exchange set>
<r>-<file type>
<r>-<record type>|<file type>
<r>-<field type>|<record type>
<r>-<field type>
<field description>
```

where:

<exchange set> is the exchange set name

- <r>> is a specified repetition factor for a subtree, where:
 - = integer, meaning a specific repetition factor
 - = null means r = 1
 - = R, meaning indefinite repetition

<file type>, <record type> and <field type> level may have an instance of the same type as a subtree (i.e. a file can be the subtree of a file, etc.)

<file type=""></file>	∷= File tag	e: external file title i.e. contents of ISO 8211 DDR; = 00	
<record type=""></record>	::= Record: record name		
<field type=""></field>	::= <tag>(<structure>:<order>)-<field name=""></field></order></structure></tag>		
<tag></tag>	::= an ISO 8211 field tag (which associates this field uniquely to its data description)		
<structure></structure>	∷= a s	uccinct description of the structure	
where	(n)	is an n-tuple (with n = integer)	
	(m*n)	is a 2-D array of m rows and n columns	
	(*n)	is a repeating 2-D table with n columns	

(i*j*k) is a 3-D array with extents i, j and k

Note: The intent of field <structure> is to provide the user with a clue to the repetition pattern of the subfields within the field. "n,m,i,j,k" represent the maximum values of the contents of the field. These may be less if optional subfields are omitted.

<order></order>	::= a succinct statement of any intra- or inter-field ordering
	requirements

where O implies the order of the subfields is significant

O, <tag>, implies the order of the subfields is correlated with the order of the subfields in the field bearing the tag(s), <tag>

<field name> ::= the ISO 8211 field name corresponding to <tag>

<field description> is the ISO 8211 data description for a field.

The details of field description are given in the next Section.

The presentation diagram for ordered, rooted trees is:

<tree root> | |-<r><subtree 1> *-<r><subtree 2> *-<r><subtree 2> *-<r><subtree 3>

NOTA BENE: In these representations, the preorder traversal sequence rule is: top down, right hand branch first. The parent of any subtree is readily apparent and the parent tags for fields must coincide with the field description. The traversal of the tree encounters the repetition factor, perhaps the default of one, of a subtree as the subtree is entered. Further repetition may be indicated in the field descriptions.

Spaces may be introduced into the text for readability and for large exchange sets the description may be compartmentalized into subtrees for reasons of clarity. The root of each subtree identifies its nodal position in its parent tree.

The above tree structures for each file define the order and structure of the data descriptive records (DDRs) and the order and structure of the data records (DRs).

A.1.2 ISO 8211 DATA FIELD DESCRIPTION

The format of the machine- and human-readable field description is described below. The format comprises a series of one-line records easily maintained by an editor. There are four record types: a control record, tag definition records, subfield definition records and interspersed comment records.

Control line:

The control line is the first line of the Field Data Description section. _Control_==_(see DDR Header in ISO 8211)

Record title line:

[req]_Record:_Record name where [req] can be [O] for optional.

Tag definition line (one per field):

____0_tag_ptag_pg_field name

where:

tag	is an ISO 8211 field tag, A7
ptag	is a parent tag, A7
pg	are the printable graphics, A2, (usually ';&')
name	is an ISO 8211 field name, A48

Subfield definition line (one per subfield):

_nsi_label_dw_(r)_subfield comment

where:

nsi	is a sequence number (1 = first, 999 = end of field description)		
label *label	is an ISO 8211 label component, Akk initiates a vector label in a Cartesian label describing a 2-d data structure		
d	 is the subfield data type, A1 (d = A I R S B) where: A signifies character data; I signifies implicit-point representation; R signifies explicit-point unscaled representation; S signifies explicit-point scaled representation; B signifies bit field data. 		
w (0 SPA	is a fixed subfield width CE = delimited, variable width)		
(r)	 is, when present, a qualifier on the subfield type: a fixed number of decimal places for R types. when L it indicates lexical alphanumeric type for A types. 		
comment	is a descriptive subfield comment		

Comment records:

Comment records must start with five SPACEs or a "-" and may be located anywhere.

Further documentation conventions:

Fields are defined at their first occurrence in the data set and are included by tag reference (i.e. tag ==) at other locations.

Unique values or ranges of values of fields and subfields are specified in {}'s, e.g.:.

$\{RTY = THF\}$	The RTY subfield must contain the value THF.
{RID = 1}	The RID subfield must contain the value 1. It may be preceded by leading zeroes.

- {NOV = 1 9} The NOV subfield must contain a value in the range 1 to 9 inclusive.
- {00 99} The subfield must contain a value in the range 00 to 99 inclusive leading zeroes are required if necessary to satisfy a fixed field width.
- {0 | 4 | 8} The subfield must contain either the value 0 or the value 4 or the value 8.
- {RID = 1,...} The RID subfield can contain any positive integer.

Sub-structure of subfields is specified in ()'s, e.g.:.

(XOR = ±mm...mm) The XOR subfield must contain a positive or negative integer value expressed in metres.

(SWO = ±SSSSSS.SS) The SWO subfield must contain ten characters representing a positive or negatively signed value expressed in seconds to a resolution of two decimal places.

A.2 ISO 8211 IMPLEMENTATION

The following specifies the content of an ASRP transmittal file set at the file level by an ordered, rooted tree structure using the notation described in Section A.1.

Exchange set: ASRP | |-File: TRANSMITTAL HEADER

> |-R Geo Dataset |-File: GENERAL INFORMATION |-File: GEO REFERENCE |-R File: SOURCE |-File: QUALITY |-R File: RASTER GEO DATA

The following Sections specify the content and structure of each ASRP file at the record and field level. The specification for each file is given as an ordered rooted tree specifying the file contents by record and field followed by the ISO 8211 data description for each field.

A.2.1 TRANSMITTAL HEADER FILE

File Content by Record and Field:

TRANSM	ITTAL H	EADER	
cord: TRA	NSMITT	AL DESCRIPTION	
001	(2)	Record Id	{RTY=THF}
VDR	(8)	Transmittal Header	
FDR	(7)	Data Set Description	
cord: SEC	URITY /	AND UPDATE	
001	(2)	Record Id	{RTY=LCF}
QSR	(4)	Security and Release	
QUV	(6)	Up_to_Dateness	
	TRANSM cord: TRA 001 VDR FDR cord: SEC 001 QSR QUV	TRANSMITTAL H cord: TRANSMITT 001 (2) VDR (8) FDR (7) cord: SECURITY 001 (2) QSR (4) QUV (6)	TRANSMITTAL HEADERecord: TRANSMITTAL DESCRIPTION001(2)Record IdVDR(8)Transmittal HeaderFDR(7)Data Set Descriptionecord: SECURITY AND UPDATE001(2)Record IdQSR(4)Security and ReleaseQUV(6)Up_to_Dateness

Field Data Descriptions:

Control == (see DDR Header in ISO 8211)

*Note: The values shown are minimum and should be modified based upon the dataset sizes (see Section A.1.2, control record).

0 1 999	000			{=TRANSMITTAL_HEADER_FILE} File title field, present only in DDR	
Rec	ord:	TR		MITTAL DESCRIPTION	
0 1 2 999	001 RTY RID	A I	3	;& RECORD_ID Record type {RTY = THF} Record id number {RID = 1}	
0 1	VDR MSD	001 A	3	;& TRANSMITTAL_HEADER Media recording standard used for this with leading zeroes (Valid codes listed Enclosure 8);	s transmittal 1 at {000-004}
2	VOO	А		Title and address of originator (\ used	l as a line

3	ADR	A		separator (free text) Title and address of addressee (\ used as line
4	NOV	I	1	separator, null for CD-ROM) (free text) Number of media volumes in this transmittal (or
5	NOF	I	3	zero for "unknown number of volumes") {0-9} Number of Data Sets in this transmittal {001-999}
6 7		A	3	Transmittal Edition Number {001-999}
8	CDV07	'A	8	Creation date for this transmittal (YYYYMMDD)
999				
0	FDR	001	1	;& DATA_SET_DESCRIPTION (Repeat for each data set in the transmittal)
1	NAM	А	6	Data Set Id, the six alphanumeric characters which
				uniquely identify the dataset to which the file
2	STR		1	belongs (ZZZZZZ).
2	PRT	A	1	Product type and map series designation
				(ASRP,Series)
4	SWO	R	10 (2)	Westernmost longitude of the extent of the
				or south pole lies inside the cartographic image
				the value will be -648000.00 seconds (i.e180
				degrees) (±SSSSSS.SS)
5	SWA	R	10 (2)	Southernmost latitude of the extent of the
				unpadded cartographic image. If the south pole
				be -324000.00 seconds (i.e90 degrees)
				(±SSSSSS.SS)
6	NEO	R	10 (2)	Easternmost longitude of the extent of the
				unpadded cartographic image. If either the north
				the value will be +648000.00 seconds (i.e. +180
				egrees) (±SSSSSS.SS)
7	NEA	R	10 (2)	Northernmost latitude of the extent of the
				lies inside the cartographic image. If the north pole
				+324000.00 seconds i.e.+90 degrees)
				(±SSSSSS.SS)
999		_	_	
Rec	ord:	SE	ECURI	TY AND UPDATE
001		=	==	$\{RTY = LCF, RID = 1\}$
0	QSR	00	1	;& SECURITY_AND_RELEASE
1	QSS	А	1	Highest security classification of the transmittal
				(Top Secret, Secret, Confidential, Restricted,
2	QOD	А	1	Originating agency's determination is required for
				downgrading {Y N}

3	CDV10A 8	Date of downgrading (If QOD is Y or C these characters are ASCII spaces) (YYYYMMDD)	QSS is U,
4	QLE A	Releasability statement (free text)	
999			
0		& UP TO DATENESS	
0			
1	SRC1 A	DIGEST Edition ID	$\{DIGEST 1.2\}$
2	CDV12 A 8	DIGEST Edition date value	{19940131}
3	SPA1 A	DIGEST Amendment number	{1}
4	SRC2 A	ASRP specification Edition ID	{ASRP 1.2}
5	CDV22 A 8	ASRP specification Edition date value	{19950331}
6	SPA2 A	ASRP specification Amendment numb	er {0}
999			

A.2.2 GENERAL INFORMATION FILE

File Content by Record and Field:

Y=GIN}
Y=DSS}

Field Data Descriptions:

control	==	(see DDR Header in ISO 8211)
000	==	{=GENERAL_INFORMATION_FILE}

Record: data set)		GENERAL INFORMATION (Repeat for each zone				
001		==		{RTY = GIN, RID = 1}		
0 1	DSI PRT	001 A		;& DATA_SET_ID Product type and map series designation (ASRP,Series)		
2	NAM	A	6	Data Set ID, the six alphanumeric characters which uniquely identify the dataset to which the file belongs (ZZZZZZ).		
999						

0	GEN	00	1	;& GENERAL_INFORMATION
1	STR	Ι	1	Structure of Data (Raster Colour Coding) {4}
2	ZNA	Ι	3	ARC Zone number {001-018}
3	SWO	R	10 (2)	Westernmost longitude of the extent within the zone
				(including overlap) of the unpadded cartographic
	014/4	-	4.0 (0)	image (±SSSSSSSSS)
4	SWA	К	10 (2)	Southernmost latitude of the extent within the zone
				(including overlap) of the unpadded cartographic
F		р	10 (2)	Inage (±55555555)
5	NEU	К	10 (2)	(including overlap) of the uppedded cartegraphic
				image (+SSSSSS SS)
6	NFA	R	10 (2)	Northernmost latitude of the extent within the zone
0		IX.	10 (2)	(including overlap) of the unpadded cartographic
				image (+SSSSSSSS)
7	SCA	Т	9	Source graphic scale reciprocal
-		-	-	{00000000-999999999}
8	PSP	R	5 (1)	Sample (pixel) spacing at which the data was
			()	originally captured (in microns) {000.0-100.0}
9	IMR	А	1	Image Rectified {Y}
10	ARV	Ι	9	Number of pixels in 360 ⁰ arc (E-W) (Adjusted for
				scale and zone) {00000001-999999999}
11	BRV	Т	9	Number of pixels in 360 ^o arc (N-S) (Adjusted for
			-	scale) {00000001-999999999}
12	LSO	R	10 (2)	Longitude of upper left pixel of the padded image
			()	within the zone, including overlap (±SSSSSS.SS)
13	PSO	R	10 (2)	Latitude of upper left pixel of the padded image
				within the zone, including overlap (±SSSSSS.SS)
14	TXT	А	(L)	Text (e.g. describes digitizing system) (free text)
999				
0	000	~~		
0	SPR	00	1	;& DATA_SET_PARAMETERS
I	NUL	I	0	the ZDR Image in pixels (not to include zero value
				nivele) (000000 127871)
2	NUIS	Т	6	Column number of the upper right corner of the MBR
2	NUU	1	0	of the ZDR Image in pixels including overlap (not to
				include zero value pixels) {000000-127871}
3	NLL	Т	6	Row number of the lower left corner of the MBR of
-			-	the ZDR Image in pixels, including overlap (not to
				include zero value pixels) {00000-127871}
4	NLS	Ι	6	Column number of the lower left corner of the MBR
				of the ZDR Image in pixels, including overlap (not to
				include zero value pixels) {00000-127871}
5	NFL	Ι	3	Number of Sub Blocks North to South (M) {001-999}
6	NFC	I	3	Number of Sub Blocks West to East (N) {001-999}
7	PNC	1	3	Number of Pixels/Sub Block Line (Q){128}
8	PNL	ļ	3	Number of Lines/Sub Block (P) {128}
9	COD	1	1	Column Sequence (left to right) {0}
10	ROD	I	1	Row Sequence (top to bottom) {1}

11	POR	I	1	Pixel order (Column in row, in band, in SubBlock)
12	PCB	I	1	Size of pixel count in bits (e.g. for Run Length
13	PVB	I	1	Size of pixel value in bits (eg for Run Length
14	BAD	А	12	Image File Name (ISO Media file label name. See
15	TIF	A	1	Tile Index Map flag (See Section 4.2.4) "Y" indicates there is an index, "N" indicates there is
999				none. {Y N}
0 1 2	BDF *BID WS1	001 A I	5 5	;& BAND_ID Band Identification (eg. RED, GREEN or BLUE) ON-colour-code value (See Section 4.3.4)
3	WS2	I	5	OFF-colour-code value (See Section 4.3.4)
999				{00000-00255}
0 1 999	TIM *TSI	001 I	11	;& TILE_INDEX_MAP Tile Index Map values (See Section 4.2.4) Repeat this subfield as required. {0000000000-999999999999999999999999999
Rec	ord:	DA	TASI	ET DESCRIPTION
001		=		{RTY = DSS, RID = 1}
0 1 2 3	DRF NSH NSV NOZ	001 I I I	2 2 2	;& DATASET_DESCRIPTIONNumber of horizontal accuracy sub-regionsNumber of vertical accuracy sub-regions{01-99}Number of zone image files{01-99}

3NOZI2Number of zone image files{01-99}4NOSI2Number of source graphics{01-99}

999

A.2.3 GEO REFERENCE FILE

File Content by Record and Field:

File: GEO REFERENCE |- Record: GEO REFERENCE | |- 001 (2) {RTY=GEO} | |- GEP (6) Geo Parameters

Field Data Descriptions:

Control == (see DDR Header in ISO 8211)

000 == {=GEO_REFERENCE_FILE}

Record: GEO REFERENCE

0	001		;& RECORD_ID	
1	RTY	Α3	Record Type	{RTY=GEO}
2	RID	I	Record id number	{RID=1}
999				
0	GEP	001	;& GEO_PARAME ⁻	TERS
1	TYP	Α3	Data Type	{GEO}
2	UNI	Α3	Unit of measureme	nt for coordinates {SEC}
3	ELL	А	Ellipsoid Name	{World Geodetic System 1984}
4	ELC	Α3	Ellipsoid Code	{WGE}
5	DAG	А	Datum Geodetic Na	ame {World Geodetic System 1984}
6	DCD	A 4	Datum Geodetic Co	ode {WGE}
999				

A.2.4 SOURCE FILE

File Content by Record and Field:

	File:	SOURCE			
	- Re	ecord: SOl	JRCE		
	-	001	(2)	Record Id	{RTY=SOU}
	-	SGF	(3)	Source Summary	
	-	SOR	(28)	Source	
	- D		(*10) (*2)	Magnetic Information	
	-r _		(2) (8)	Projection	
	- -	QSR	(0)	Security and Release	
	-	INS	(*19)	Inset	
	i i-	CPY	(1)	Copyright	
[O]	-R	Record: L	EGEND		
	-	001	(2)	Record Id	{RTY=LEG}
	-	LGI	(2)	Legend	
	-	SPR	(15)	Scanning Parameters	
	- 	I IIVI	(1)	The muex map	
	∣ -Re	cord: MET	RIC SU	IPPORT	
	-	001	(2)	Record Id	{RTY=MSD}
	-	NCD	(8)	Normalization Constants	
	-	SDC	(14)	Source Datum Coefficients Data	
	-	MPC	(20)	Map Projections Coefficients Data	

-Re - -	ecord: S 001 SUP	UPF (; ()	PLEME 2) *3)	ENTARY TEXT Record Id Supplementary Text	{RTY=SPT}
Data	Descrip	tions	5:		
cont 000	ontrol == 000 ==		:=	(see DDR Header in ISO 8211) {= SOURCE_FILE}	
Rec	ord:	SC	URC	E	
001		==	{RTY	r = SOU, RID = 1}	
0 1 2 3 999	SGF NST NLI NIN	001 	4 2 2	;& SOURCE_SUMMARY Number of supplementary text recor Number of legend images Number of insets	ds {0000-9999} {00-99} {00-99}
0 1	SOR PRT	001 A	10	;& SOURCE Series Designator: Will be used in a STANAG 3716	conformance with
2	URF	A	20	Unique Source ID (Item): The Item when used in conjunction with the S will identify a unique source	number or name series and Edition
3	EDN	А	7	Source Edition Identifier: Will	be used in
4	NAM	А		Full Name: The complete name o	f a graphic (free
5	CDP	I		Type of significant date. A designate accurately describes the basic date computation of the probable obsolic can be the completion date, revision date depending on the product ar	ed date that most of the product for lescence date. It on date, or other od circumstances
6 7	CDV COU	A A	8 2	(Valid codes listed at Enclosure 1, C Significant Date value: (YYYYMMDE Country Code: used to identi geopolitical area associated with th Enclosure 7)	DP) D) fy the primary ne product (See
8 9	CDV27 SCA	' A I	8 9	Perishable information date (YYYYI Cartographic Scale: A designation cartographic scale reciprocal	MMDD) of the product's
10	GRD	A		Cartographic Grid : An identi cartographic grid(s) used on the nA2) (See Enclosure 2) (GRD1 GR	fication of the product (Format
11	SQU	I		Area Coverage: This component in	ndicates the area
12	UNIsqu	А	3	Area Coverage Unit of Measuremen	ts the unit of
	-Re - Data Cont 000 Rec 001 0 1 2 3 999 0 1 2 3 4 5 6 7 8 9 9 10 11 12 3 4 5	-Record: S 001 - SUPData Descripcontrol 000Record: 0010SGF NST NIN 9990SGF NST 20SOR PRT2URF3EDN PRT4NAM S5CDV COU8CDV27 SCA10GRD11SQU12UNIsqu	$ -Record: SUPF $ $ - O01 \\ 001 \\ - SUP $ Control $000 = 1$ Record: SC $001 = 1$ $001 = 1$ $0 SGF 001$ $1 SGF 001$ $1 SGF 001$ $1 PRT A$ $2 URF A$ $3 EDN A$ $4 NAM A$ $5 CDV A$ $6 CDV27 A$ $7 CDV A$ $8 CDV27 A$ $10 GRD A$ $11 SQU I$ $12 UNIsqu A$	$\begin{vmatrix} -Record: SUPPLEME \\ - 001 (2) \\ - SUP (*3) \end{vmatrix}$ Data Descriptions: $control == 000 = == 000 = == 000 = $	-Record: SUPPLEMENTARY TEXT -001 (2) Record Id -SUP (*3) Supplementary Text Data Descriptions: control == (see DDR Header in ISO 8211) 000 == {= SOURCE_FILE} Record: SOURCE 001 == {RTY = SOU, RID = 1} 0 SGF 001 ;& SOURCE_SUMMARY 1 NST 1 4 Number of supplementary text record: 2 NLI 1 2 Number of supplementary text record: 3 NIN 1 2 Number of supplementary text record: 2 NLI 1 2 Number of supplementary text record: 3 NIN 1 2 Number of supplementary text record: 2 URF A 10 Series Designator: Will be used in ordicate StanAG 3716 2 URF A 20 Unique Source ID (Item): The Item when used in conjunction with the StanAG 3671 4 NAM A Full Name: The complete name or text) 5 CDP I Type of significant date. A designati accurately de

13	PCI	I	4	measure of the area coverage (See Enclosure 9) Contour Interval: Value of the primary/basic interval between contour lines on the map or chart
				{0000-9999}
14	UNIpci	A	3	Contour Unit of Measurement: Identifies the unit of measure of the interval between consecutive contour lines on the product (See Enclosure 9)
15	WPC	Ι	3	Percent Water: The percentage of the source that is covered by water (999 if unknown). {000-100 999}
16	NST	1	3	Navigation System Type (See Enclosure 1.NST)
17	ELL	А		Ellipsoid Name: This component contains the
				name of the ellipsoid on which the product was
18	FLC	Δ	З	Ellipsoid Code: This Component contains a code
10		Λ	5	of the name of the ellipsoid on which the product was
40		^		produced (See Enclosure 3)
19	DVR	А		Datum of Vertical Reference Name: Name used to
				describe the vertical reference system on which the
				product was produced. Usually the hame of the polit
201	/DCdvr	٨	1	Datum of Vertical Reference Code (See Enclosure
20 \		~	4	1,VDC)
21	SDA	А		Sounding Datum Name
22 \	/DCsda	А	4	Sounding Datum Code (See Enclosure 1,VDC)
23	DAG	A		Geodetic Datum Name: Represents the product's
~ .				geodetic control datum (See Enclosure 8)
24	DCD	A	4	Geodetic Datum Code: Code used to represent the
05			•	Geodetic Datum (See Enclosure 4)
25	HKE	I	6	Highest Known Elevation (of the source - ASCII
00		^	2	spaces if unknown) {000000-9999999}
26		A	ろ 40 (0)	Units of the elevation value (See Enclosure 9)
27	LON	ĸ	10 (2)	Longitude of the Hignest Known Elevation
20		D	10 (2)	(±333333.33) Latitude of the Highest Known Elevation
20	LAT	Γ	10 (2)	
000				(=\$\$\$\$\$\$.\$\$)
999				
0		00	1	
1		00	I	, a MAGINE TIC_INFORMATION
ן ר		1	0	Dete of information (magnetic) (XXXX/MMDD)
2		A	8	Date of information (magnetic) (YYYYMMDD)
3	RAI	ĸ	8	Magnetic rate of change
4	UNITAT	A	<u></u>	Units magnetic rate of change) (See Enclosure 9)
5	GMA	К	8	Grid Magnetic Angle (GMA): Grid North to Magnetic
с II	NILeves -	٨	2	North (clockwise regarded as positive)
υU	INIGMA	A	ろ 10 (の)	Units of G-IVI angle (See Enclosure 9)
1	LUN	к	10 (2)	(±SSSSSS.SS)
8	LAT	R	10 (2)	Latitude of the G-M angle reference point (±SSSSSS.SS)

Annex A - ISO 8211 Implementation To ASRP Edition 1.2 March 1995 9 GCA R **Grid Convergence Angle** 8 10 UNIgca A 3 Units of Grid Convergence Angle (See Enclosure 9) 999 0 **;& BOUNDING POLYGON COORDINATES** RCI 001 1 *LON R 10 (2) Longitude Coordinate (±SSSSSS.SS) 2 LAT R 10 (2) Latitude Coordinate (±SSSSSS.SS) 999 0 PRR 001 :& PROJECTION 1 PRN Α Projection Name: Name given the cartographic projection of the source graphic. (free text) 2 PCO А 2 Projection Code: Projection may have up to 4 parameters (see Enclosure 5), as follows: (Null if Geo) 3 PAA R Projection Parameter 1 (±SSSSSS.SS if latitude or 10 lonaitude) 4 PAB R 10 Projection Parameter 2 (±SSSSSS.SS if latitude or longitude) 5 PAC R 10 Projection Parameter 3 (±SSSSSS.SS if latitude or lonaitude) 6 PAE R 10 Projection Parameter 4 (±SSSSSS.SS if latitude or longitude) 7 X false origin of the map grid (+0000000 if not XOR R 8 applicable) (+mmmmmm) 8 8 Y false origin of the map grid (+0000000 if not YOR R applicable) (+mmmmmmm) 999 0 QSR 001 ;& SECURITY_AND_RELEASE 1 QSS Security classification of the source (Top Secret, A 1 Secret, Confidential, Restricted, Unclassified) $\{T \mid S \mid C \mid R \mid U\}$ 2 QOD Α 1 Originating agency's determination is required for downgrading $\{Y \mid N\}$ 3 CDV10 A 8 Date of downgrading (If QOD is Y or QSS is U, these characters are ASCII SPACE) (YYYYMMDD) QLE Releasability statement (free text) 4 А 999 0 INS 001 ;& INSET 1 *INT А 2 Unique ID for inset {00-99} 2 SCA 1 9 Reciprocal cartographic scale of inset {00000000-999999999} 3 NAM A Inset Name (free text) 4 NTL R 10 (2) Absolute longitude of Lower Left Corner of the inset as stated in the inset's coordinates

(±SSSSSSSSS)

5	TTL	R	10 (2) Absolute latitude of Lower Left Corner of the inset as stated in the inset's coordinates (±SSSSSS.SS)
6	NVL	R	10 (2) Absolute longitude of Upper Left Corner of the inset as stated in the inset's coordinates (±SSSSSS.SS)
7	TVL	R	10 (2) Absolute latitude of Upper Left Corner of the inset as stated in the inset's coordinates (±SSSSSS.SS)
8	NTR	R	10 (2) Absolute longitude of Upper Right Corner of the inset as stated in the inset's coordinates (±SSSSSS.SS)
9	TTR	R	10 (2) Absolute latitude of Upper Right Corner of the inset as stated in the inset's coordinates (±SSSSSS.SS)
10	NVR	R	10 (2) Absolute longitude of Lower Right Corner of the inset as stated in the inset's coordinates (±SSSSSS.SS)
11	TVR	R	10 (2) Absolute latitude of Lower Right Corner of the inset as stated in the inset's coordinates (±SSSSSS.SS)
12	NRL	R	10 (2) Relative longitude of Lower Left Corner of the inset as stated in the host graphic's coordinates (the value of these coordinates are stated in terms of host graphic, as if the inset did not appear on the host graphic) (+SSSSS SS)
13	TRL	R	10 (2) Relative latitude of Lower Left Corner of the inset as stated in the host graphic's coordinates (the value of these coordinates are stated in terms of host graphic, as if the inset did not appear on the host graphic) (±SSSSSS.SS)
14	NSL	R	10 (2) Relative longitude of Upper Left Corner of the inset as stated in the host graphic's coordinates (the value of these coordinates are stated in terms of host graphic, as if the inset did not appear on the host graphic) (±SSSSS.SS)
15	TSL	R	10 (2) Relative latitude of Upper Left Corner of the inset as stated in the host graphic's coordinates (the value of these coordinates are stated in terms of host graphic, as if the inset did not appear on the host graphic) (±SSSSSS.SS)
16	NRR	R	10 (2) Relative longitude of Upper Right Corner of the inset as stated in the host graphic's coordinates (the value of these coordinates are stated in terms of host graphic, as if the inset did not appear on the host
17	TRR	R	10 (2) Relative latitude of Upper Right Corner of the inset as stated in the host graphic's coordinates (the value of these coordinates are stated in terms of

March	199	5							
	18	NSR TSR	R	10 (2) 10 (2)	host graphic, as if the inset did not appear on the host graphic) (±SSSSSS.SS) Relative longitude of Lower Right Corner of the inset as stated in the host graphic's coordinates (the value of these coordinates are stated in terms of host graphic, as if the inset did not appear on the host graphic) (±SSSSSS.SS) Relative latitude of Lower Right Corner of the inset				
	999				as stated in the host graphic's coordinates (the value of these coordinates are stated in terms of host graphic, as if the inset did not appear on the host graphic) (±SSSSSS.SS)				
	0 1 999	CPY CPZ	00 ⁻ A	1	;& COPYRIGHT Copyright statement (free text)				
[0]	Rec	ord:		LEGEN	ND				
	001		==		{RTY = LEG, RID = 1}				
	0 1) LGI NAM		1	& LEGEND Legend name (i.e. TYPE of legend image) (See Section 3.7) (free text)				
	2 999	STR	I	1	Data Structure Code (Raster Colour Coding){4}				
	SPR	SPR		==	(see General Information Record, although for SPR in the Legend Record, Subfield BAD has				
	ТІМ		:	==	(see General Information Record)				
	Record: METRIC SUPPORT Refer to Annex B for the math model equations which utilize the coefficients and normalization constants given in the fields.								
	001		:	==	{RTY = MSD, RID = 1}				
	0 1 2 3 4 5 6	NCD TSF GSF TTT GTT NSF ESF	00 S S S S S S S S S S	1 22 22 22 22 22 22 22	;& NORMALIZATION_CONSTANTS Latitude Scale Factor Longitude Scale Factor Latitude Translation Term Longitude Translation Term Northing Scale Factor Easting Scale Factor				

- S 22 S 22
- 6 7 8 Easting Scale Factor Northing Translation Term NTT
- S 22 Easting Translation Term ETT
- 999

0	SDC	001	1	:& SOURCE DATUM COEFFICIENTS DATA
1	AX1	S	22	Latitude coefficient 1
2	AX2	S	22	Latitude coefficient 2
3	AX3	S	22	Latitude coefficient 3
4	AX4	S	22	Latitude coefficient 4
5	AX5	S	22	Latitude coefficient 5
6	AX6	S	22	Latitude coefficient 6
7	AX7	S	22	Latitude coefficient 7
8	BX1	S	22	Longitude coefficient 1
9	BX2	ŝ	22	Longitude coefficient 2
10	BX3	ŝ	22	Longitude coefficient 3
11	BX4	ŝ	22	Longitude coefficient 4
12	BX5	S	22	Longitude coefficient 5
13	BX6	s	22	Longitude coefficient 6
14	BX7	s	22	Longitude coefficient 7
999	BAI	0	~~	
000				
0	MPC	001	I	;& MAP_PROJECTIONS_COEFFICIENTS_DATA
1	CX1	S	22	Northing coefficient 1
2	CX2	S	22	Northing coefficient 2
3	CX3	S	22	Northing coefficient 3
4	CX4	S	22	Northing coefficient 4
5	CX5	S	22	Northing coefficient 5
6	CX6	S	22	Northing coefficient 6
7	CX7	S	22	Northing coefficient 7
8	CX8	S	22	Northing coefficient 8
9	CX9	S	22	Northing coefficient 9
10	CXA	S	22	Northing coefficient 10
11	DX1	S	22	Easting coefficient 1
12	DX2	S	22	Easting coefficient 2
13	DX3	S	22	Easting coefficient 3
14	DX4	S	22	Easting coefficient 4
15	DX5	S	22	Easting coefficient 5
16	DX6	S	22	Easting coefficient 6
17	DX7	S	22	Easting coefficient 7
18	DX8	S	22	Easting coefficient 8
19	DX9	S	22	Easting coefficient 9
20	DXA	S	22	Easting coefficient 10
999				0
Red	cord:	รเ	JPPL	EMENTARY TEXT
001		=	==	$\{RTY = SPT, RID = 1\}$
001				(111 - 011), (12 - 1)
0 1	SUP *TRY	00 ² A	l 4	;& SUPPLEMENTARY_TEXT Supplementary text record type. This subfield will contain a code identifying the supplementary text type. The following types have been defined: Type Description
				CONV Convergence table information

[0]

				CPYZ DATM	Extended copyright notice Datum subregion identifier (the subfield DCD in the SOURCE_ FIELD of the SOURCE_ RECORD in the SOURCE_FILE contains the first three characters of the datum code)
				MISC	Miscellaneous
				NOTE	Textual CHUM notes
				XXXX	Other codes (when mutually
					agreed upon).
2	TRI	А	4	Supplementary text	field reference identifier. Used to
				index several entrie	s of the same type. {0001-9999}
3	ТХТ	A		This variable lengtl supplementary tex	h subfield will contain the actual tual information as described

above. (Free text)

999

A.2.5 QUALITY FILE

File Content by Record and Field:

	File:		(
	-Re	cord: QUA	ALITY		
	Ì -	001	(2)	Record Id	{RTY=QAL}
	<u> </u> -	QSR	(4)	Security and Release	
	İİ-	QUV	(10)	Up_to_Dateness	
	ii-	COL	(*9)	Colour Code Id	
	ļi-	QOI	(1)	Other Quality Information	
	 -R	Record: H	ORIZON	TAL ACCURACY	
	-	001	(2)	Record Id	{RTY=HOR}
	-	ASH	(4)	Horizontal Accuracy	
	-	RCI	(*2)	Bounding Polygon Coordinates	
	 -R	Record: V	ERTICAL	ACCURACY	
	-	001	(2)	Record Id	{RTY=VER}
	-	ASV	(4)	Vertical Accuracy	
	-	RCI	(*2)	Bounding Polygon Coordinates	
Field D	Data	Descriptic	ons:		

control	==	(see DDR Header in ISO 8211)
000	==	{=QUALITY_FILE}

Record: QUALITY

001 == {RTY = QAL, RID = 1}

0 1	QSR QSS	001 A	1	;& SECURITY_AND_RELEASE Highest security classification of the reference object (Top Secret, Secret, Confidential, Rest	ed ricted,
2	QOD	А	1	Originating agency's determination is require	d for
3	CDV10	A	8	Date of downgrading (If QOD is Y or QSS is these characters are ASCII SPACE) (YYYYMMDD)	U, then
4 999	QLE	A		Releasability statement (free text)	
0 1	QUV EDN	001 I	3	;& UP_TO_DATENESS Edition Identifier of this dataset: Will be used	in
2 3 4 5 6 7 8	CDV07 CDV24 REC REV SRC CDV22 SPA	A I I A A	8 8 3 3 8	Date of creation of data set (YYYYMMDD) Date of revision or update (YYYYMMDD) Recompilation count Revision count Specification ID for ASRP (free text) Date of specification (YYYYMMDD) ASRP Specification amendment identifier (free	{000-999} {000-999}
9 10 999	CDV20 CDV21	A A	8 8	Date of earliest source (YYYYMMDD) Date of latest source (YYYYMMDD)	,
0 1	COL *CBD	001 A		;& COLOUR_CODE_ID Name and/or Description for Colour Code (gr	raphic
2 3 4	CCD CR1 CR2	 	3 6 6	Colour Code assigned in the data set CIE x (real values scaled by 1000000) CIE y (real values scaled by 1000000)	{000-255}
5 6	CR3 FRM	I A	6	CIE Reflectance (Y) (real values scaled by 1 Mathematical Relation to other colour-codes Section 3.4.2) (free text)	000000) (See
7 8 9 999	NSR NSG NSB	 	3 3 3	Colour Intensities (RED nominal) Colour Intensities (GREEN nominal) Colour Intensities (BLUE nominal)	{000-255} {000-255} {000-255}
0 1 999	QOI OQI	001 A		;& OTHER_QUALITY_INFORMATION Free text	
Rec	ord:	НС	ORIZO	NTAL ACCURACY	
001		=	=	{RTY = HOR,RID = 1}	
0	ASH	001		;& HORIZONTAL_ACCURACY	

1 AAH 2 UNIaah 3 APH 4 UNIaph 999	I 5 A 3 I 5 A 3	Absolute Horizontal Accuracy Unit of measure (see Enclosure 9) Relative Horizontal Accuracy Unit of measure (see Enclosure 9)	{00000-99999} {00000-99999}
RCI	==	(see Source Record)	
Record:	VERTIC	AL ACCURACY	
001	==	{RTY = VER, RID = 1}	
0 ASV 1 AAV 2 UNIaav 3 APV 4 UNIapv 999	001 I 5 A 3 I 5 A 3	;& VERTICAL_ACCURACY Absolute Vertical Accuracy Unit of measure (see Enclosure 9) Relative Vertical Accuracy Unit of measure (see Enclosure 9)	{00000-99999} {00000-99999}
RCI	==	(see Source Record)	

A.2.6 RASTER GEO DATA FILE

File Content by Record and Field:

-File:	RASTER GEO DATA					
-R Record:	IMAG	E				
- 001	(2)	Record Id		{RTY=IMG}		
- PAD	(1)	Padding				
- SCN	(*1)	Pixel Field				

Field Data Descriptions:

control 000		==	(see DDR Header in ISO 8211) {=RASTER_GEO_DATA_FILE}				
Record:		IMAGE					
001		==	{RTY = IMG,RID = 1}				
0 1	PAD PAD	001 A	;& PADDING Padding characters added to pad the image pixels start at the beginning of on the media.	e file so that the a physical block			
999 0 1 999	SCN *PIX	001 B 8	;& PIXEL Pixel Values - edit to B(8)	(BBBBBBBB)			

A.3 BACKWARD COMPATIBILITY

Existing Interchange files conforming with ASRP 1.0 or with ADRG may be imported as they are, or converted into conforming files using the alternate subfield definitions.

Where changes have occured, subfields are given an alternate subfield definition which describes the way the information will be transmitted in these existing DIGEST interchange files. The alternate subfield definition contains:

- an alternate name (possibly the same)
- an alternate sub-field type (possibly the same)
- the transformation to be applied to the alternate subfield value.

Notation:

		subfield label	subfie type	eld	alterna labe	ate el	alternate type	transformation
					" "	= S	ame name	e or type
ex:	2	RID	I	Record ID number	_		A2	A_TO_I

A.3.1 TRANSFORMATION FUNCTIONS AND THEIR C IMPLEMENTATION

There are five types of transformation required for defining the alternate sub-fields:

- SAME_I may only apply when the alternate type and the subfield type is I, the length of the field is the only change, the value will be the same, right justified, padded on the left with "0"s if required.
- SAME_R may only apply when the alternate type and the subfield type is R, the length of the field is the only change, the value will be the same, right justified, padded on the left with "0"s if required.
- SAME_A may only apply when the alternate type and the subfield type is A, the length of the field is the only change, the value will be the same, left justified, padded on the right with blank spaces, or truncated, if required.
- A_TO_I may only apply when the alternate type is A and the subfield type is I, the value, a character string representing an integer number, will be converted in an integer value.
- A_TO_R may only apply when the alternate type is A and the subfield type is R, the value, a character string representing an explicit real number, will be converted in a real value.
- DATE_V may only apply when the alternate type is A 12 and the subfield type is A 8, only the last 8 characters representing a date value will be kept.
- DATE_P may only apply when the alternate type is A 12 and the subfield type is I 3, only the first 3 characters representing a date type code will be converted to an integer value.

- UNIT may only apply when the alternate type is I 3 and the subfield type is A 3, the I 3 value taken from FACC 1.1 (or ADRG) units codification is converted to the corresponding value in DIGEST 1.2 part 3 Table 10.
- D_TO_S may only apply when the alternate type is A 10 or A 11 and the subfield type is R 10, the geographic coordinate expressed in sexagesimal degrees (±(D)DDMMSS.SS) is converted to seconds (±SSSSSS.SS).

The C implementation of the functions is as follows:

```
#define
         ERROR
                 (-1)
#define
        NORMAL
                 0
                 {ADRG, ASRP} Product;
typedef
         enum
                (int *new, int old, int mini, int maxi)
int
         SAME I
{
         if (old < mini || old > maxi) {
           *new = 0;
           return ERROR;
         }
         *new = old;
         return NORMAL;
}
int
                (double *new, double old, double minr, double maxr)
         SAME R
{
         if (old < minr || old > maxr) {
           *new = 0;
           return ERROR;
         }
         *new = old;
         return NORMAL;
}
int
         A_TO_I (int *new, char *old, int mini, int maxi)
{
         int i;
         i = atoi(old);
         if (i < mini || i > maxi) {
           *new = 0;
           return ERROR;
         *new = i;
         return NORMAL;
}
int
         A_TO_R (double *new, char *old, double minr, double maxr)
{
         double r;
         r = atof(old);
         if (r < minr || r > maxr) {
           *new = 0;
           return ERROR;
         *new = r;
         return NORMAL;
}
```

```
int DATE_V ( char *new, char *old)
{
     int y,m,d;
     strncpy(new,old+4,8);
     new[8] = ' \setminus 0';
     if (sscanf(new, "%4d%2d%2d", &y, &m, &d) != 3) return ERROR;
     if (m < 1 || m > 12 || d < 1 || d > 31) return ERROR;
     return NORMAL;
}
int DATE P (int *new, char *old)
ł
     *new = atoi(old);
     if (*new < 0 | *new > 999) return ERROR;
     return NORMAL;
}
int SAME_A (char *new, char *old, int new_width)
/* new_width is the width of the new field, excluding NULL terminator */
{
     int i;
     for (i=0; i < new_width && *old; i++) *new++ = *old++ ;</pre>
     while (i++ < new_width) *new++ = ' ';</pre>
     *new = '\0';
     return NORMAL;
}
int UNIT ( char *new_unit, int old_unit, Product prod_id)
/* function to convert old ASRP or ADRG unit of measure codes
                                               */
  to new DIGEST 1.2 unit of measure codes
{
     int i;
                                       /* new code */
     static struct { char *code;
                                       /* ADRG code */
                      int
                            adrg;
                                       /* ASRP code */
                      int
                            asrp;
                             0,
     }
          unit[] = {"UNK",
                                    0, /* Unknown */
                     "UM",
                                   16, /* Micrometers */
                             16,
                                   23, /* Millimeters */
                     "MM",
                             Ο,
                                   17, /* Centimeters */
                              Ο,
                     "CM",
                     "DM",
                              Ο,
                                   18, /* Decimeters */
                                   1, /* Meters */
                              1,
                     "M",
                                   22, /* Kilometers */
                              Ο,
                     "KM",
                                   21, /* Inches */
                     "IN",
                              Ο,
                                   14, /* Feet */
                     "FT",
                             14,
                                       /* Yards */
                     "YD",
                                   28,
                              Ο,
                                   15, /* Fathoms */
                     "FM",
                             15,
                                   20, /* Fathoms and Feet */
                     "FF",
                             Ο,
                     "MI",
                             Ο,
                                   27, /* Statute Miles */
                     "NM",
                                   11, /* Nautical Miles */
                             11,
                             3,
                                   3, /* Seconds */
                     "S",
                                   10, /* +/- HH MM SS.S*/
                             10,
                     "N/A",
                     "M/S",
                                   4, /* Meters per Second */
                             4,
                     "KNOT", 12,
                                   12, /* Knots */
                                   13, /* Nautical Mile /Day*/
                     "NM/D", 13,
                                   24, /* Mils */
                     "ML",
                             17,
                                   26, /* Seconds (of arc)*/
                     "SEC",
                             18,
                                   25, /* Minutes (of arc)*/
                     "MA",
                             19,
                                   19, /* Degrees (of arc)*/
                     "DEG",
                             20,
```

```
9, /* +/- DDD MM SS.S */
                     "N/A", 9,
                                 2, /* Kips */
                     "KIP", 2,
                           б,
                                 6, /* Volts */
                     "V",
                           7,
                                 7, /* Watts */
                     "W",
                          8,
                                 8, /* Hertz */
                     "HZ",
                     "M3/S" 5,
                                5, /* Cubic Meters/ Second */
                              999 /* Other */
                    "OTH",999,
     };
     if (prod_id == ADRG) {
          for (i = 0; i < 30; i++) {
               if (old_unit == unit[i].adrg) {
                    strcpy(new_unit,unit[i].code);
                    return NORMAL;
               }
          }
     } else if (prod_id == ASRP) {
          for (i = 0; i < 30; i++) {
               if (old_unit == unit[i].asrp) {
                    strcpy(new_unit,unit[i].code);
                    return NORMAL;
               }
          }
     }
     return ERROR;
}
int D_TO_S (double *sec, char *dms)
/* function to convert lat or long in +/- (D)DDMMSS.SS format
   to seconds of arc */
{
     float d,m,s;
     char sign;
     if (strlen(dms) == 10) {
        if (sscanf(dms, "%c%2f%2f%5f", &sign, &d, &m, &s) != 4)
               return ERROR;
     } else if (strlen(dms) == 11){
        if (sscanf(dms, "%c%3f%2f%5f", &sign, &d, &m, &s) != 4)
               return ERROR;
     } else
          return ERROR;
     if ( d > 180.0 || m > 60.0 || s > 60.0 ) return ERROR;
     *sec = 3600.0 * d + 60.0 * m + s;
     if (sign == '-')
          *sec = -*sec;
     else if (sign != '+')
          return ERROR;
     return NORMAL;
}
```

A.3.2 TRANSFORMATIONS FROM ASRP 1.0

A.3.2.1 ASRP 1.2 FROM ASRP 1.0: TRANSMITTAL HEADER FILE

Record: TRANSMITTAL DESCRIPTION

0	2	001 RID I	I	;& RECORD_ID Record ID number			A 2	A_TO_I
0	1 8	VDR MSD CDV07	001 A 3 A 8	;& TRANSMITTAL_HEADER Media Volume and File Structure Creation date value	— DA	г	A 1 A12	SAME_A DATE_V
0	1	FDR NAM	001 A 6	& DATA_SET_DESCRIPTION Dataset ID			A 8	SAME_A

Record: SECURITY AND UPDATE

0	2	001 RID I	;& RECORD_ID Record ID number	_	A 2	A_TO_I
0	3	QSR 001 CDV10A 8	;& SECURITY_AND_RELEASE Date of downgrading	DAT	A12	DATE_V
0		QUV 001	;& UP_TO_DATENESS			

Best regarded as a new version of the field, with fixed contents.

A.3.2.2 ASRP 1.2 FROM ASRP 1.0: GENERAL INFORMATION FILE

Record: GENERAL INFORMATION

0	001		;& RECORD_ID			
2	RID	I	Record ID number	_	A 2	A_TO_I
0	DSI	001	:&DATA SET ID			
2	NAM	A 6	Dataset ID	_	A 8	SAME_A
10	ARV	19	Number of pixels in 360° (E-W)	—	18	SAME_I
11	BRV	19	Number of pixels in 360° (N-S)	—	18	SAME_I
0	GEN	001	:& GENERAL INFORMATION			
2	ZNA	13	Zone number	—	12	SAME_I

Record: DATASET DESCRIPTION

0	001		;& RECORD_ID		
2	RID	Ι	Record ID number		A 2 A_TO_I

A.3.2.3 ASRP 1.2 FROM ASRP 1.0: GEO REFERENCE FILE

This file is new to ASRP 1.2 and its contents are fixed.

A.3.2.4 ASRP 1.2 FROM ASRP 1.0: SOURCE FILE

Record:		SO	URCE			
0 2	001 RID	I	;& RECORD_ID Record ID number		A 2	A_TO_I
0 5 8 11 12 14 20 21 24 26	SOR CDP CDV CDV27 SQU UNIsqu UNIpci VDCdvr SDA DCD UNIhke	001 I A 8 I A 3 A 3 A 4 A A 4 A 3	;& SOURCE Type of significant date Significant Date value Perishable info date value Area Coverage Unit for Area Coverage Unit for Contour Interval Code for Datum Sounding Datum Name Geodetic Datum Code Units of elev. value	1st DAT 1st DAT 2nd DAT — — — — — — — — — — — — — — — —	A12 A12 I 6 I 3 I 3 A 3 A 20 A 3 I 3	DATE_P DATE_V DATE_V SAME_I UNIT UNIT SAME_A SAME_A SAME_A UNIT
0 1 2 4 6 10	MAG *CDP CDV UNIrat UNIgma UNIgca	001 I A 8 A 3 A 3 A 3	;& MAGNETIC_INFORMAT Type of date Magnetic rate Date value Units of annual rate of change Units of grid magnetic angl Units of convergence angle	DAT DAT DAT e — —	A12 A12 I 3 I 3 I 3	DATE_P DATE_V UNIT UNIT UNIT
0 3	QSR CDV10	001 A 8	;& SECURITY_AND_RELE Date of downgrading	ASE DAT	A12	DATE_V

Record:

LEGEND

0	001		;& RECORD_ID			
2	RID	I	Record ID number {RID=1}	_	A 2	A_TO_I

Record: METRIC SUPPORT

0	001		;& RECORD_ID			
2	RID	I	Record ID number {RID=1}	—	A 2	A_TO_I

0 NCD 001 ;& NORMALIZATION_CONSTANTS

Subfields should already be S22, in which case no transformation is needed. (If type R22 was used, SAME_R is the appropriate transformation.)

0 SDC 001 ;& SOURCE_DATUM_COEFFICIENTS_DATA

Subfields should already be S22, in which case no transformation is needed. (If type R22 was used, SAME_R is the appropriate transformation.)

0 MPC 001 ;& MAP_PROJECTIONS_COEFFICIENTS_DATA

Subfields should already be S22, in which case no transformation is needed. (If type R22 was used, SAME_R is the appropriate transformation.)

Record: SUPPLEMENTARY TEXT

0	001		;& RECORD_ID			
2	RID	1	Record ID number {RID=1}	—	A 2	A_TO_I
A.3.2.5 ASRP 1.2 FROM ASRP 1.0: QUALITY FILE

Record:			QU	IALITY			
0	2	001 RID	I	;& RECORD_ID Record ID number {RID=1}	-	A 2	A_TO_I
0	3	QSR CDV10	001 A 8	;& SECURITY_AND_RELEASE Date of downgrading D	AT	A12	DATE_V
0	1 2 3 7 9	QUV EDN CDV07 CDV24 CDV22 CDV20 CDV21	001 I 3 A 8 A 8 A 8 A 8 A 8 A 8	;& UP_TO_DATENESS Edition Number of Dataset Creation of dataset date value Revision or Update date value Specification date value Earliest source date value Latest source date value	DAT DAT DAT DAT DAT DAT	A 20 A12 A12 A12 A12 A12 A12 A12	A_TO_I DATE_V DATE_V DATE_V DATE_V DATE_V DATE_V
0	4 5	COL CR2 CR3	001 6 6	;& COLOUR_CODE_ID CIE y - CIE Reflectivity (Y) -	_	5 5	See Note See Note
		To transform	CR2 and	d CR3 from I5 to I6, multiply by 10	0 (or app	pend 0 a	s 6th digit).
Re	cor	d:	HC	RIZONTAL ACCURACY			
0	2	001 RID	I	;& RECORD_ID Record ID number -	-	A 2	A_TO_I
0	2	QAP	001	;& HORIZONTAL_ACCURACY		1	
	4	UNIaph	A 3 A 3	Unit of measure - Unit of measure -	_	3 3	UNIT UNIT
Re	4 cor	UNIaph d:	A 3 A 3 VE	Unit of measure - Unit of measure - RTICAL ACCURACY	_	3 3	UNIT UNIT
Re (4 cor 2	UNIaph d: 001 RID	A 3 A 3 VE	Unit of measure - Unit of measure - RTICAL ACCURACY - ;& RECORD_ID - Record ID number -	_ _	13 13 A2	UNIT UNIT A_TO_I

A.3.2.6 ASRP 1.2 FROM ASRP 1.0: RASTER GEO DATA FILE

(The equivalent ASRP 1.0 file is called GEO DATA FILE.)

		Record:		IMAGE		
0	2	001 RID	I	;& RECORD_ID Record ID number	_	A 2 A_TO_I
0	1	SCN *PIX	001 B 8	;& PIXEL Pixel Values - edit to B(8)	_	A 1 See Note

Each pixel value is unchanged, but is to be treated as bit-field data.

A.3.3 TRANSFORMATIONS FROM ADRG

A.3.3.1 ASRP 1.2 FROM ADRG: TRANSMITTAL HEADER FILE

Record: TRANSMITTAL DESCRIPTION

- 0 001 ;& RECORD_ID
 - 1RTYA 3Record typeSee Note2RIDIRecord ID number—A 2A_TO_I

The contents of subfield RTY are changed from VTH to THF.

0		VDR	001	;& TRANSMITTAL_HEADER			
	1	MSD	A 3	Media Recording Standard	_	A 1	See Note
	2	VOO	А	Originator	_	A 200	SAME_A
	3	ADR	А	Addressee	_	A 1	SAME_A
	8	CDV07	A 8	Creation date value	DAT	A12	DATE_V

Subfield MSD is effectively new (as it was space-filled in ADRG).

0		FDR	001	;& DATA_SET_DESCRIPTIO	Ν		
	1	NAM	A 6	Dataset ID		A 8	SAME_A
	2	STR	11	Data structure code	_	—	See Note
	3	PRT	А	Dataset type	_	A 4	SAME_A
	4	SWO	R 10 (2)	Westernmost long.	_	A 11	D_TO_S
	5	SWA	R 10 (2)	Southernmost lat.	_	A 10	D_TO_S
	6	NEO	R 10 (2)	Easternmost long.	_	A 11	D_TO_S
	7	NEA	R 10 (2)	Northernmost lat.		A 10	D_TO_S

For subfield STR the value 3 is replaced by 4 to reflect the change to colour-coded data.

Record: SECURITY AND UPDATE

0	2	001 RID	I	;& RECORD_ID Record ID number		A 2	A_TO_I
0	3 4	QSR CDV10 QLE	001 A 8 A	;& SECURITY_AND_RELEAS Date of downgrading Releasability	SE DAT —	A12 A 200	DATE_V SAME_A
-							

0 QUV 001 ;& UP_TO_DATENESS

Best regarded as a new version of the field, with fixed contents.

A.3.3.2 ASRP 1.2 FROM ADRG: GENERAL INFORMATION FILE

Record: GENERAL INFORMATION

0 2	001 RID	I	;& RECORD_ID Record ID number		A 2	A_TO_I
0 1 2	DSI PRT NAM	001 A A 6	;& DATA_SET_ID Dataset type Dataset ID		A 4 A 8	SAME_A SAME_A
0 2 3 4	GEN ZNA SWO SWA	001 I 3 R 10 (2) R 10 (2)	;& GENERAL_INFORMATION Zone number Westernmost longitude Southernmost latitude	N	I 2 A 11 A 10	SAME_I D_TO_S D_TO_S

10 11 12 12	5 6 0 1 2 3	NEO NEA ARV BRV LSO PSO	R 10 R 10 I 9 I 9 R 10 R 10	(2) (2)	Easternmost longitude Northernmost latitude Number of pixels in 360° (E-W) Number of pixels in 360° (N-S) Longitude/Easting. of origin Latitude/Northing of origin			A 11 A 10 I 8 I 8 A 11 A 10	D_TO_S D_TO_S SAME_I SAME_I D_TO_S D_TO_S
14	4	ТХТ	Α	(L)	Free Text		_	A 64	SAME_A
0	7 8	SPR PNC PNL	001 3 3		;& DATA_SET_PARAMETERS Pixels/Subblock Line Scan Lines/Subblock			6 6	SAME_I SAME_I
0	1	TIM *TSI	001 I 11		;& TILE_INDEX_MAP Tile index map			15	SAME_I
Record: DATA				ΑΤΑ	SET DESCRIPTION				

0	001	;& RECORD ID	

2	RID	Ι	Record ID number		A 2	A_TO_I

A.3.3.3 ASRP 1.2 FROM ADRG: GEO REFERENCE FILE

This file is new to ASRP 1.2 and its contents are fixed.

A.3.3.4 ASRP 1.2 FROM ADRG: SOURCE FILE

Record: SOURCE

0		001		;& RECORD_ID			
	2	RID	I	Record ID number		A 2	A_TO_I
0		SOR	001	;& SOURCE			
	4	NAM	А	Full Name of Source	—	A 100	SAME_A
	5	CDP	1	Type of significant date	1st DAT	A12	DATE_P
	6	CDV	A 8	Significant Date value	1st DAT	A12	DATE_V
	8	CDV27	A 8	Perishable info date value	2nd DAT	A12	DATE_V
1	0	GRD	Α	Cartographic Grid Code		A 4	SAME_A
1	1	SQU	I	Area Coverage		16	SAME_I
1	2	UNIsqu	A 3	Unit for Area Coverage	—	13	UNIT
1	4	UNIpci	A 3	Unit for Contour Interval	—	13	UNIT
1	7	ELL	Α	Ellipsoid Name	—	A 15	SAME_A
1	9	DVR	Α	Datum Vertical Reference		A 20	SAME_A
2	21	SDA	Α	Sounding Datum Name		A 20	SAME_A
2	23	DAG	Α	Geodetic Datum Name	—	A 21	SAME_A
2	24	DCD	A 4	Geodetic Datum Code	—	A 3	SAME_A
2	26	UNIhke	A 3	Units of elev. value	—	13	UNIT
2	27	LON	R 10	Longitude/Easting of HKE		A 11	D_TO_S
2	28	LAT	R 10	Latitude/Northing of HKE	_	A 10	D_TO_S
0		MAG	001	:& MAGNETIC INFORMATIC	N		
	1	*CDP	1	Type of date	3rd DAT	A12	DATE P
	2	CDV	A 8	Magnetic rate Date value	3rd DAT	A12	DATE_V
	3	RAT	R 3	Magnetic rate of change	RAT or RTW	—	
	4	UNIrat	A 3	Units of annual rate of change	UNIrat or UNIrtw	13	UNIT
	6	UNIgma	A 3	Units of grid magnetic angle		13	UNIT
	7	LOŇ	R 10	Longitude/Easting ref. point			See Note
	8	LAT	R 10	Latitude/Northing ref. point			See Note
1	0	UNIgca	A 3	Units of convergence angle	_	13	UNIT

ASRP has separate fields for SOR and MAG, whereas ADRG has all the subfields in SOR.

LON and LAT must be derived from geographic extents defined in the General Information File. The presence of 2 reference points in the ADRG Source Field would lead to the full set of subfields occurring twice.

0		RCI	001		;& BOUNDING POLYGON C	COORDIN	ATES	
	1	*LON	R 10		Longitude/Easting coordinate	<u> </u>	A 11	D TO S
	2	IAT	R 10		Latitude/Northing coordinate		A 10	
	2	L/ ()			Editade/Northing boordinate	I		D_10_0
0		DDD	001					
0	1		^	,	Brojection Name			
	1				Projection Name		A 100	SAIVIE_A
	3	PAA	R 10		Projection Parameter 1	—	A 11	D_10_S
								or A_TO_R
	4	PAB	R 10		Projection Parameter 2		A 11	D_TO_S
								or A_TO_R
	5	PAC	R 10		Projection Parameter 3	l	A 11	D TO S
	•							or A TO R
	e		D 10		Projection Parameter 4		A 11	
	0	PAE	RIU		Projection Parameter 4		AII	D_10_3
								or A_TO_R
	7	XOR	R 8		Easting false Origin	XOO	A 11	A_TO_R
	8	YOR	R 8		Northing false Origin	YOO	A 10	A_TO_R
					6 6			
0		QSR	001		& SECURITY AND RELEAS	SE		
	3	CDV1	0 A 8		Date of downgrading	DAT	A12	DATE V
	1		Δ		Releasability		A 200	SAME A
	-	QLL	~		Releasability		A 200	
0		INIS	001					
0	S		^		Nome of Incot	1		
	3		A				A 100	SAIVIE_A
	4	NIL	R 10		Abs. Ion. lower left corner	—	A 11	$D_{10}S$
	5	TTL	R 10		Abs. lat. lower left corner		A 10	D_TO_S
	6	NVL	R 10		Abs. Ion. upper left corner	—	A 11	D TO S
	7	TVI	R 10		Abs lat upper left corner	l	A 10	
	Ω.		R 10		Abs. Ion. upper right corner		A 11	
	0				Abs. lot. upper right corner			
	9		RIU		Abs. Iai. upper fight comer		AIU	D_10_3
	10	NVR	R 10		Abs. Ion. lower right corner	—	A 11	$D_{10}S$
	11	TVR	R 10		Abs. lat. lower right corner		A 10	D_TO_S
	12	NRL	R 10		Rel. Ion. lower left corner	—	A 11	D TO S
	13	TRL	R 10		Rel. lat. lower left corner	l	A 10	D TO S
	1/	NSI	R 10		Rel lon unner left corner		Δ 11	
	15				Rel. lot. upper left corner			
	10	ISL	R IU		Rei. lat. upper leit corner		AIU	D_10_3
	16	NRR	R 10		Rel. Ion. upper right corner	—	A 11	D_IO_S
	17	TRR	R 10		Rel. lat. upper right corner	— —	A 10	D_TO_S
	18	NSR	R 10		Rel. Ion. lower right corner	—	A 11	D_TO_S
	19	TSR	R 10		Rel. lat. lower right corner`	l	A 10	D TO S
						1	1	
0		CPY	001		:& COPYRIGHT			
•	1	CP7	Δ	(1)	Copyright statement	<u> </u>	A 200	SAME A
		012	~	(⊏)	oopyngin statement	I	A 200	
Da	~~~							
ĸe	COI	a.	L.	EGE				
~		004						
0	~	001			A RECORD_ID	1	• -	
	2	RID	I		Record ID number {RID=1}	— —	A 2	A_TO_I
0		LGI	001		;& LEGEND	1		
	1	NAM	А		Legend Name	—	A 8	SAME_A
	2	STR	11		Data structure code	—	_	See Note

For subfield STR the value 3 is replaced by 4 to reflect the change to colour-coded data.

0		SPR	001	;& DATA_SET_PARAMETER	S		
	7	PNC	13	Pixels/Subblock Line		16	SAME_I
	8	PNL	13	Scan Lines/Subblock	—	16	SAME_I

0	TIM	001	;& TILE_INDEX_MAP			
1	*TSI	I 11	Tile index map	_	Ι5	SAME_I

Record: METRIC SUPPORT

0	001		;& RECORD_ID		
2	RID	I	Record ID number {RID=1}	 A 2	A_TO_I

Record: SUPPLEMENTARY TEXT

0	001		;& RECORD_ID			
2	RID	I	Record ID number {RID=1}	—	A 2	A_TO_I

A.3.3.5 ASRP 1.2 FROM ADRG: QUALITY FILE.

Record: QUALITY

0		001		;& RECORD_ID			
	2	RID	I	Record ID number {RID=1}		A 2	A_TO_I
0		QSR	001	;& SECURITY_AND_RELEASE			
	3	CDV10	A 8	Date of downgrading	DAT	A12	DATE_V
	4	QLE	А	Releasability		A 200	SAME_A
0		QUV	001	;& UP_TO_DATENESS			
	1	EDN	13	Edition Number of Dataset		A 20	A_TO_I
	2	CDV07	A 8	Creation of dataset date value	1st DAT	A12	DATE_V
	3	CDV24	A 8	Revision or Update date value	2nd DAT	A12	DATE_V
	6	SRC	А	Specification ID		A 100	SAME_A
	7	CDV22	A 8	Specification date value	3rd DAT	A12	DATE_V
	8	SPA	А	Specification amendment		A 20	SAME_A
	9	CDV20	A 8	Earliest source date value	4th DAT	A12	DATE_V
	10	CDV21	A 8	Latest source date value	5th DAT	A12	DATE_V

Record: HORIZONTAL ACCURACY

0	2	001 RID	I	;& RECORD_ID Record ID number	_	A 2	A_TO_I
0		QAP	001	;& HORIZONTAL_ACCURAC	Y		
	2	UNlaah	A 3	Unit of measure	—	13	UNIT
	4	UNIaph	A 3	Unit of measure	_	13	UNIT
0		RCI	001	;& BOUNDING_POLYGON_C	OORDINA	TES	
	1	*LON	R 10	Longitude/Easting coordinate		A 11	D_TO_S
	2	LAT	R 10	Latitude/Northing coordinate		A 10	D_TO_S

Record: VERTICAL ACCURACY

0	2	001 RID	I	;& RECORD_ID Record ID number	_	A 2	A_TO_I
0	2 4	QAP UNlaav UNlapv	001 A 3 A 3	;& VERTICAL_ACCURACY Unit of measure Unit of measure	_	3 3	UNIT UNIT

0	RCI	001	;& BOUNDING_POLYGON_COORDINATES
---	-----	-----	---------------------------------

Annex A - ISO 8211 Implementation To **ASRP** Edition 1.2 March 1995

1	*LON	R 10	Longitude/Easting coordinate	—	A 11	D_TO_S
2	LAT	R 10	Latitude/Northing coordinate	—	A 10	D_TO_S

A.3.3.6 ASRP 1.2 FROM ADRG: RASTER GEO DATA FILE

(The equivalent ADRG file is called GEO DATA FILE.)

Record: IMAGE

0	00 2 RI	1 D	I	;& RECORD_ID Record ID number	_		A 2	A_TO_I
0	SC 1 *P	CN IX	001 B 8	;& PIXEL Pixel Values - edit to B(8)	_		A 1	See Note

Each pixel value is unchanged, but is to be treated as bit-field data.

A.4 EXAMPLES OF ISO 8211 STRUCTURES

Where the contents of a field has been truncated, this is shown by "..." before the semi-colon.

A.4.1 EXAMPLE OF TRANSMITTAL HEADER FILE

DATA_DESCRIPTIVE_RECORD

Tag Descriptive Data

- 000 0000;&TRANSMITTAL_HEADER_FILE;
- 001 1600; & RECORD_ID & TY! RID & (A(3), I);
- VDR 1600;&TRANSMITTAL_HEADER&MSD!VOO!ADR!NOV!NOF!URF!EDN!CDV07& (A(3),2A,I(1),I(3),A,I(3),A(8));
- FDR 1600;&DATA_SET_DESCRIPTION&
 NAM!STR!PRT!SWO!SWA!NEO!NEA&(A(6),I(1),A,4R(10));
 QSR 1000;&SECURITY_AND_RELEASE&
- QSS!QOD!CDV10!QLE&(2A(1),A(8),A); QUV 1000;&UP_TO_DATENESS& SRC1!CDV12!SPA1!SRC2!CDV22!SPA2&(A,A(8),2A,A(8),A);

TRANSMITTAL_DESCRIPTION_RECORD

Tag U	ser Data
-------	----------

001 THF1;

VDR 003MILITARY SURVEY\ELMWOOD AVENUE\FELTHAM\MIDDLESEX\TW13
7AH\ENGLAND&CGI\14 RUE SAINT DOMINIQUE\75997 PARIS ARMEES
FRANCE&1003ASRP_TEST_DATA&00119940830;

- FDR FA29144ASRP, IGN50K&+015539.77+175607.73+016835.71+176255.76;
- FDR FB29144ASRP, IGN50K&+015539.77+175607.73+016835.71+176255.76;

FDR TPUK014ASRP, TPC&-019801.75+187199.20+007200.87+207000.89;

SECURITY_AND_UPDATE_RECORD

Tag User Data

001 LCF1; QSR UN ; QUV DIGEST 1.2&199401310&ASRP 1.2&199408010; QUV DIGEST 1.2&199401310&ASRP 1.2&199408010; QUV DIGEST 1.2&199401310&ASRP 1.2&199408010;

A.4.2 EXAMPLE OF GENERAL INFORMATION FILE

DATA_DESCRIPTIVE_RECORD

Tag Descriptive Data

- 000 0000; & GENERAL_INFORMATION_FILE;
- 001 1600; & RECORD_ID & RTY! RID & (A(3), I);
- DSI 1000;&DATA_SET_ID&PRT!NAM&(A,A(6)); GEN 1600;&GENERAL_INFORMATION& STR!ZNA!SWO!SWA!NEO!NEA!SCA!PSP!IMR!ARV!BRV!LSO!PSO!TXT& (I(1),I(3),4R(10),I(9),R(5),A(1),2I(9),2R(10),A);
- SPR 1600;&DATA_SET_PARAMETERS&
 NUL!NUS!NLL!NLS!NFL!NFC!PNC!PNL!COD!ROD!POR!PCB!PVB!BAD!TIF&
 (41(6),41(3),51(1),A(12),A(1));
- BDF 2600;&BAND_ID&*BID!WS1!WS2&(A(5),2I(5));
- TIM 2100;&TILE_INDEX_MAP&*TSI&(I(11));
- DRF 1100;&DATASET_DESCRIPTION&NSH!NSV!NOZ!NOS&(4I(2));

GENERAL_INFORMATION_RECORD

Tag User Data

- 001 GIN1;
- DSI ASRP, TPC&TPUK01;
- GEN 4003-019801.75+187199.20+007200.87+203257.43000500000100.
- 0N000491520000800768-019912.50+203432.22;
- SPR 00010801028301003000004207908112812801088TPUK0101.IMGY;
- BDF Color

TIM 0000000010000000257000000051300000007690000000102500000012810 000000153700000001793000000204900000023050000002561000000281700000030730000003329000000358500000038410000004097000000435300000004609000000486500000051210000000537700000005633000000058890 00000061450000006401000000665700000006913000000716900000074250 00000076810000000793700000081930000008449000000870500000089610 000000921700000094730000009729000000998500000010241000000104970000001228900000012545000000128010000001305700000013313000000135690000001382500000014081000000143370000001459300000014849000000151050000001791500000020895000000238490000002677100000029795000000327190 00000356990000038511000000414410000004444300000047435000000504090000005344500000056459000000595070000006243900000065407000000682910000007123100000074183000000769190000007785300000078109000000783650 0000078621000000788770000007913300000079389000000796450000007990100000080157000000804130000080669000008092500000081181000000814370 000008169300000819490000082205000008246100000827170000008297300000083229000008348500000837410000008399700000084253000000845090000008476500000850210000085277000000855330000008578900000860450000008630100000086557000000868130000008706900000087325000000875810 0000087837000000880930000088349000000886050000008861000000891170000008937300000089629 ...;

GENERAL_INFORMATION_RECORD

Tag User Data

- 001 GIN2;
- DSI ASRP, TPC&TPUK01;
- GEN 4004-019801.01+201598.52+007200.00+207000.89000500000100.0N00039833 6000800768-019989.71+207161.12;
- SPR 00009900835700343700005802706612812801088TPUK0102.IMGY;
- BDF Color
- TIM 0000000001000000025700000005130000000769000000010250000001281 0000001537000000017930000002049000000230500000025610000002817 000000307300000033290000003585000000384100000040970000004353000000460900000486500000051210000005377000000056330000005889000000614500000064010000006657000000691300000071690000007425000000768100000079370000008193000000844900000087050000008961 000000092170000009473000000972900000009985000000102410000001049700000010753000000110090000011265000000115210000001177700000012033000000123170000001576500000019777000000233570000002688500000030431000000344110000003794300000041727000000458550000004980700000053847000000577850000006182300000065813000000699270000007389900000077833 00000079239000000794950000007975100000080007000000802630000080519 000000807750000081031000008128700000081543000000817990000082055000000823110000008256700000082823000000830790000008333500000083591 00000083847000000841030000084359000000846150000008487100000085127000000853830000008563900000085895000000861510000008640700000086663 0000008691900000871750000008743100000087687000000879430000008819900000088455000000887110000008896700000089223000000894790000008973500000089991000009024700000905030000090759000009101500000912710000009152700000107239000001231970000013914100000154385000001699350000018476300000200791000002159030000023191900000247831000002628830000027919100000296269 ...;

DATASET_DESCRIPTION_RECORD

- Tag User Data
- 001 DSS1; DRF 01010201;

A.4.3 EXAMPLE OF GEO REFERENCE FILE

This example is the actual Geo Reference File which is always used in ASRP 1.2.

DATA_DESCRIPTIVE_RECORD

Tag Descriptive Data

- 000 0000;&GEO_REFERENCE_FILE;
- 001 1600; & RECORD_ID&RTY!RID& (A(3),I);
- GEP 1000; & GEO_PARAMETERS&
 - TYP!UNI!ELL!ELC!DAG!DCD & (2A(3), A, A(3), A, A(4));

GEO_REFERENCE_RECORD

Tag User Data

- 001 GEO1;
- GEP GEOSECWorld Geodetic System 1984&WGEWorld Geodetic System 1984&WGE
 ;

There is a space after "WGE".

A.4.4 EXAMPLE OF SOURCE FILE

DATA_DESCRIPTIVE_RECORD

- Tag Descriptive Data
- 000 0000;&SOURCE_FILE;
- 001 1600; & RECORD_ID & RTY! RID & (A(3), I);
- SGF 1100;&SOURCE_SUMMARY&NST!NLI!NIN&(I(4),2I(2));
- SOR 1600; & SOURCE &
 - PRT!URF!EDN!NAM!CDP!CDV!COU!CDV27!SCA!GRD!SQU!UNIsqu!PCI!UNIpci !WPC!NST!ELL!ELC!DVR!VDCdvr!SDA!VDCsda!DAG!DCD!HKE!UNIhke !LON!LAT&(A(10),A(20),A(7),A,I,A(8),A(2),A(8),I(9),A,I,A(3),
 - I(4), A(3), 2I(3), A, A(3), A, A(4), A, A(4), A, A(4), I(6), A(3), 2R(10));
- MAG 2600;&MAGNETIC_INFORMATION&
 *CDP!CDV!RAT!UNIrat!GMA!UNIgma!LON!LAT!GCA!UNIgca&
 (I,A(8),R(8),A(3),R(8),A(3),2R(10),R(8),A(3));
- RCI 2200;&BOUNDING_POLYGON_COORDINATES&*LON!LAT&(2R(10));
- PRR 1600;&PROJECTION&
- PRN!PCO!PAA!PAB!PAC!PAE!XOR!YOR&(A,A(2),4R(10),2R(8));
 QSR 1000;&SECURITY_AND_RELEASE&
- QSS!QOD!CDV10!QLE&(2A(1),A(8),A);
- INS 2600;&INSET&
 *INT!SCA!NAM!NTL!TTL!NVL!TVL!NTR!TTR!NVR!TVR!NRL!TRL!NSL!TSL!NRR
 !TRR!NSR!TSR&(A(2),I(9),A,16R(10));
- CPY 1000; & COPYRIGHT& CPZ& (A);
- LGI 1600; & LEGEND & NAM! STR & (A, I(1));
- SPR 1600;&DATA_SET_PARAMETERS& NUL!NUS!NLL!NLS!NFL!NFC!PNC!PNL!COD!ROD!POR!PCB!PVB!BAD!TIF& (41(6),41(3),51(1),A(12),A(1));
- TIM 2100;&TILE_INDEX_MAP&*TSI&(I(11));
- NCD 1300; &NORMALIZATION_CONSTANTS&
- TSF!GSF!TTT!GTT!NSF!ESF!NTT!ETT&(8S(22));
- SDC 1300;&SOURCE_DATUM_COEFFICIENTS_DATA&
 AX1!AX2!AX3!AX4!AX5!AX6!AX7!BX1!BX2!BX3!BX4!BX5!BX6!BX7&
 (14S(22));
- SUP 2000;&SUPPLEMENTARY_TEXT& *TRY!TRI!TXT&(2A(4),A);

SOURCE_RECORD

- Tag User Data
- 001 SOU1;

Annex A - ISO 8211 Implementation To **ASRP** Edition 1.2 March 1995

SGF	00000100;						
SOR	TPC	E01B		7-GSGS &			
	24&198711	11UK19890501	1000500001	ND&0&KM20500E	T 050	Internat	ional&I
	NTMean Sea	a Level&MSL	<u>ک</u> ک	000000M			;
MAG	026&19880	101-0000010	4000000 AN)SEC-019800.0	0+19440	0.00+0000	000SEC;
RCI	-019800.0	0+201600.00-	+000000.00-	+201600.00+00	00000.00	+207000.00	0+007200
	.00+20700	0.00+007200	.00+187200	.00-019800.00)+187200	.00-01980	0.00+201
	600.00;						
PRR	Lambert C	onformal Cor	nic&LE-				
	006300.00	+177600.00+1	196800.00+1	194400.00+000	000+000	00000;	
QSR	UN	;					

CPY United Kingdom copyright applies. 1987. (c) Crown Copyright, 1987.;

LEGEND_RECORD

Tag User Data

- 001 LEG1;
- LGI TPUK01IN&4;
- SPR 00000008360008340000000700712812801088TPUK01IN.L01Y; TIM 00000000100000119410000026969000004170700000567490000067589 00000723830000073715000009338900001148870000013617700000157441 0000167519000017745900001798930000019930500002211690000236883 000002585810000027872300000292137000002945670000031393900000333045 000003475010000036465900000383307000003964010000040031500000419591 000004403190000045887100000471621000004837990000049666500000500345 000005188270000053931300000557997000005633730000057312500000586431 000005900370000059197700000594215000005964010000059766700000599445 00000603673;

METRIC_SUPPORT_RECORD

Tag User Data

001 MSD1;

NCD	+0.330000023357570E+00+0.250000017695129E+00+0.55000000000000E+02 -0.200000000000E+01+0.32000003739551E-05+0.399999998990097E-05
SDC	+0.900000000000000000000000000000000000
	+0.00000000000000000000000000000000000
MPC	+0.682509516243106E-01+0.107981355210845E+01-0.281750474661202E-02 +0.181259916215958E-02+0.204368208685661E-03+0.225400363774999E-01 +0.536234894115758E-03+0.106186153791464E-15-0.163494555376292E-02
	+0.995135776849017E-16-0.660128391915662E-01+0.464251627182605E-02 +0.102420129252747E+01+0.722443439259734E-05-0.742802550940754E-01
	+0.974917924014257E-04-0.591196607160828E-16-0.115590942101383E-03 +0.223050395305016E-12-0.519956205740372E-03;

;

A.4.5 EXAMPLE OF QUALITY FILE

DATA_DESCRIPTIVE_RECORD

Tag Descriptive Data

- 000 0000;&QUALITY_FILE;
- 001 1600;&RECORD_ID&RTY!RID&(A(3),I);
- QSR 1000; & SECURITY_AND_RELEASE &
- QSS!QOD!CDV10!QLE&(2A(1),A(8),A); QUV 1600;&UP_TO_DATENESS& EDN!CDV07!CDV24!REC!REV!SRC!CDV22!SPA!CDV20!CDV21&(I(3),2A(8), 2I(3),A,A(8),A,2A(8));
- COL 2600; & COLOUR_CODE_ID&
- *CBD!CCD!CR1!CR2!CR3!FRM!NSR!NSG!NSB&(A,I(3),3I(6),A,3I(3));
- QOI 1000; & OTHER_QUALITY_INFORMATION&
- OQI&(A); ASH 1600;&HORIZONTAL_ACCURACY& AAH!UNIaah!APH!UNIaph&(I(5),A(3),I(5),A(3));
- ASV 1600; & VERTICAL_ACCURACY&
- AAV!UNIaav!APV!UNIapv&(I(5),A(3),I(5),A(3)); RCI 2200;&BOUNDING_POLYGON_COORDINATES&
- *LON!LAT&(2R(10));

.

QUALITY_RECORD

Tag User Data

001 QAL1;

Q5R	UN /	
QUV	00019940830	000000ASRP 1.2&199408010&
COL	&000	&001001001
	&001	&249244230
	&002	&045031033
	&003	&050069183
	&004	&116058046
	&005	&108092089
	&006	&151162047
	&007	&083044107
	&008	&146103150
	&009	&177184217
	&010	&111130204
	&011	&250235170
	&012	&254243132
	&013	&254231087
	&014 ;	

HORIZONTAL_ACCURACY_RECORD

Tag User Data

- 001 HOR1;
- ASH 00850FT 00850FT ;
- RCI -019800.00+201600.00+000000.00+201600.00+000000.00+207000.00+00720 0.00+207000.00+007200.00+187200.00-019800.00+187200.00-019800.00+2 01600.00;

Annex A - ISO 8211 Implementation To ASRP Edition 1.2 March 1995

VERTICAL_ACCURACY_RECORD

Tag User Data

001 VER1;

- 00250FT 00250FT ; ASV
- -019800.00+201600.00+000000.00+201600.00+000000.00+207000.00+00720RCI 01600.00;

A.4.6 EXAMPLE OF RASTER GEO DATA FILE

DATA_DESCRIPTIVE_RECORD

Tag Descriptive Data

- 000
- 0000;&RASTER_GEO_DATA_FILE; 1600;&RECORD_ID&RTY!RID&(A(3),I); 001
- PAD 1000; & PADDING & PAD& (A);
- 2500;&PIXEL&*PIX&(B(8)); SCN

IMAGE_RECORD

Tag User Data

001 PAD	IMC	G1;																				
	~~/	~~~				~~~	~~~	~~~	~ ~ ~ /	~ ~ ~ /	~~~/	~~~		~~~	~~~	~ ~ ~ /	~~~/	~~~	~~~		~~~/	~~~
	~~/								~~~	~~~		~~~		~ ~ ~ /		~~~					· · · ·	~~~
	~~/	~~~/					~~~/		~ ~ ~ /	~~~		~~~		~~~/		~~~			~~~/		~~~/	~~~
	~~/								~~~	~~~		~~~		~ ~ ~ /		~~~					· · · ·	~~~
	~~/	~~~/					~~~/		~ ~ ~ /	~~~		~~~		~~~/		~~~			~~~/		~~~/	~~~
	~~/	~~~/					~~~/		~ ~ ~ /	~~~		~~~		~~~/		~~~			~~~/		~~~/	~~~
	~~/	~~~/					~~~/		~ ~ ~ /	~~~	` . .		;									
SCN	80	00	80	00	80	00	80	00	80	00	80	00	80	00	80	00	80	00	80	00	80	00
	80	00	80	00	80	00	80	00	80	00	80	00	80	00	80	00	80	00	80	00	80	00
	80	00	80	00	80	00	80	00	80	00	80	00	80	00	80	00	80	00	80	00	80	00
	80	00	80	00	80	00	80	00	80	00	80	00	80	00	80	00	80	00	80	00	80	00
	80	00	80	00	80	00	80	00	80	00	80	00	80	00	80	00	80	00	80	00	80	00
	80	00	80	00	80	00	80	00	80	00	80	00	80	00	80	00	80	00	• •	;	;	

The contents of the SCN field are shown above in their hexidecimal form.

ANNEX B -- ARC COORDINATE TRANSFORMATIONS

SECTION

Page

B.1 B.2	ARC System Parameters Provided in ASRP Support Fields Latitude and Longitude (ϕ_{84} , λ_{84}) a Pixel at (r, c)	B-1 B-2
B.3	Pixel Coordinates (r, c) of a Geographic Point (ϕ_{84} , λ_{84})	B-3
B.4	Source Datum Coordinate (ϕ_{src} , λ_{src}) from WGS 84 Coordinates	
	(φ ₈₄ , λ ₈₄)	B - 4
B.5	Map Projection Coordinates (N, E) from Source Graphic Datum	
	Coordinates (ϕ_{src} , λ_{src})	B-5
B.6	Computation of Constants A_{sz} and B_{s}	B-6
B.7	Computation of Coordinates ϕ_0 and λ_0	B-7
B.8	Maximum Stretch and Shrink Values for Zones	B-8

B.1 ARC System Parameters Provided in ASRP Support Fields

Parameter	Description	<u>Subfield</u>
(φ ₀ ,λ ₀)	WGS 84 coordinates of the Zone Distribution	
	Rectangle (ZDR) (0,0) pixel	PSO,LSO
(φ ₈₄ , λ ₈₄)	WGS 84 coordinates of the geographic point	
(ϕ_{src} , λ_{src}) S	Source datum coordinates of the geographic point	
A _{sz}	East-West pixel spacing at scale 1:S in zone Z	ARV
B _s	North-South pixel spacing at scale 1:S	BRV
a _i	Coefficients of the polynomial for latitude ϕ , i = 17	AX1AX7
b _i	Coefficients of the polynomial for longitude λ , i = 17	BX1BX7
$S_{\scriptscriptstyle{\varphi}}$	Latitude normalizing scale factor	TSF
S_λ	Longitude normalizing scale factor	GSF
Φ _{off}	Latitude normalizing offset	TTT
λ_{off}	Longitude normalizing offset	GTT
Ci	Coefficients of the polynomial for Northing, $i = 110$	CX1CXA
di	Coefficients of the polynomial for Easting, $i = 110$	DX1DXA
S _N	Northing normalizing scale factor	NSF
S _E	Easting normalizing scale factor	ESF
N _{off}	Northing normalizing offset	NTT
E _{off}	Easting normalizing offset	ETT

where units for latitude and longitude are decimal degrees.

In this annex, round () denotes "nearest integer to".

B.2 Latitude and Longitude (ϕ_{84}, λ_{84}) of a Pixel at (r, c)

Parameters Used:

<u>Parameter</u> (φ ₀ , λ ₀)	Description WGS 84 coordinates of the (0, 0) ZDR pixel	<u>Subfield</u> PSO,LSO
A _{sz}	East-West pixel spacing at scale 1:S in zone Z	ARV
Bs	North-South pixel spacing at scale 1:S	BRV

B.2.1 Non-Polar Case

 $\begin{array}{l} \varphi_{84} \ = \varphi_0 \ - \ (\ 360^\circ \ r \ / \ \textbf{B}_s \) \\ \lambda_{84} \ = \lambda_0 \ + \ (\ 360^\circ \ c \ / \ \textbf{A}_{sz} \) \end{array}$

B.2.2 North Polar Case

(1) ARC System Coordinates (x_0 , y_0) at (φ_0 , λ_0)

 $\begin{aligned} x_0 &= (\mathbf{B}_s / 360^\circ) \quad (90^\circ - \phi_0) \sin(\lambda_0) \\ y_0 &= - (\mathbf{B}_s / 360^\circ) (90^\circ - \phi_0) \cos(\lambda_0) \end{aligned}$

(2) ARC System Coordinates (x,y) at (r,c)

$$x = x_0 + c$$
$$y = y_0 - r$$

(3) WGS 84 Coordinates (ϕ_{84} , λ_{84}) at (x, y)

$$\begin{split} \varphi_{84} &= 90^{\circ} \cdot \left[\left(\begin{array}{c} x^2 + y^2 \right)^{1/2} / \left(\begin{array}{c} \mathbf{B}_s / 360^{\circ} \right) \right] \\ \lambda_{84} &= \arccos \left[\begin{array}{c} -y / \left(\begin{array}{c} x^2 + y^2 \right)^{1/2} \right] & \text{if } x > 0 \text{ or } x = 0, \ y \neq 0 \\ \lambda_{84} &= -\arccos \left[\begin{array}{c} -y / \left(\begin{array}{c} x^2 + y^2 \right)^{1/2} \right] & \text{if } x < 0 \\ \lambda_{84} &= 0^{\circ} \text{ (i.e., undefined)} & \text{if } x = y = 0 \\ \end{split}$$

where $0^{\circ} \le \arccos[-y/(x^2 + y^2)^{1/2}] \le 180^{\circ}$

B.2.3 South Polar Case

(1) ARC System Coordinates (x_0 , y_0) at (φ_0 , λ_0)

$$\begin{aligned} x_0 &= (\mathbf{B}_s / 360^\circ) (90^\circ + \phi_0) \sin(\lambda_0) \\ y_0 &= (\mathbf{B}_s / 360^\circ) (90^\circ + \phi_0) \cos(\lambda_0) \end{aligned}$$

(2) ARC System Coordinates (x,y) at (r,c)

 $x = x_0 + c$ $y = y_0 - r$

(3) WGS 84 Coordinates (
$$\phi_{84}$$
, λ_{84}) at (x, y)

$$\begin{split} \varphi_{84} &= -90^{\circ} + \left[\left(\begin{array}{c} x^2 + y^2 \right) ^{1/2} / \left(\begin{array}{c} \textbf{B}_s / 360^{\circ} \right) \right] \\ \lambda_{84} &= \arccos \left[\begin{array}{c} y / \left(\begin{array}{c} x^2 + y^2 \right) ^{1/2} \right] & \text{if } x > 0 \text{ or } x = 0, \ y \neq 0 \\ \lambda_{84} &= -\arccos \left[\begin{array}{c} y / \left(\begin{array}{c} x^2 + y^2 \right) ^{1/2} \right] & \text{if } x < 0 \\ \lambda_{84} &= 0^{\circ} \text{ (i.e., undefined)} & \text{if } x = y = 0 \\ \end{split}$$

where $0^{\circ} \leq \arccos \left[y / (x^2 + y^2)^{1/2} \right] \leq 180^{\circ}$

B.3 ZDR Pixel Coordinates (r, c) of a Geographic Point (ϕ_{84} , λ_{84})

Parameters Used:

Parameter	<u>Description</u>	<u>Subfield</u>
(φ ₀ ,λ ₀)	WGS 84 coordinates of the (0, 0) ZDR pixel	PSO,LSO
A _{sz}	East-West pixel spacing at scale 1:S in zone Z	ARV
B _s	North-South pixel spacing at scale 1:S	BRV

B.3.1 Non-Polar Case

 $\begin{aligned} r &= round \ [(\phi_0 - \phi_{84}) (\mathbf{B}_s / 360^\circ)] \\ c &= round \ [(abs (\lambda_{84} - \lambda_0) \mod 360^\circ) (\mathbf{A}_{sz} / 360^\circ)] \end{aligned}$

B.3.2 North Polar Case

(1) ARC System Coordinates (x_0 , y_0) at (φ_0 , λ_0)

 $\begin{aligned} x_0 &= (\mathbf{B}_s / 360^\circ) (90^\circ - \phi_0) \sin(\lambda_0) \\ y_0 &= -(\mathbf{B}_s / 360^\circ) (90^\circ - \phi_0) \cos(\lambda_0) \end{aligned}$

(2) ARC System Coordinates (x , y) at (φ_{84} , λ_{84})

 $\begin{array}{l} x \; = \; (\; {\bm B}_{\rm S} \, / \, 360^\circ \;) \; (\; 90^\circ - \; \varphi_{84} \;) \; {\rm sin} \; (\; \lambda_{84} \;) \\ y \; = \; - \; (\; {\bm B}_{\rm S} \, / \; 360^\circ \;) \; (\; 90^\circ - \varphi_{84} \;) \; {\rm cos} \; (\; \lambda_{84} \;) \\ \end{array}$

(3) ZDR Pixel Coordinates (r, c) at (x, y)

Annex B - ARC System To **ASRP** Edition 1.2 March 1995

$$r = round (y_0 - y)$$

$$c = round (x - x_0)$$

B.3.3 South Polar Case

(1) ARC System Coordinates (x_0 , y_0) at (ϕ_0 , λ_0)

 $\begin{array}{rcl} x_{0} & = & (\ \textbf{B}_{s} \, / \, 360^{\circ} \,) \, (\ 90^{\circ} + \varphi_{0} \,) \, sin \, (\ \lambda_{0} \,) \\ y_{0} & = & (\ \textbf{B}_{s} \, / \, 360^{\circ} \,) \, (\ 90^{\circ} + \varphi_{0}) \, cos \, (\ \lambda_{0} \,) \end{array}$

(2) ARC System Coordinates (x, y) at $(\phi_{84}, \lambda_{84})$

 $\begin{array}{l} x \; = \; (\; {\bm B}_{s} \, / \, 360^{\circ} \;) \; (\; 90^{\circ} + \varphi_{84} \;) \; sin \; (\; \lambda_{84} \;) \\ y \; = \; (\; {\bm B}_{s} \, / \; 360^{\circ} \;) \; (\; 90^{\circ} + \varphi_{84} \;) \; cos \; (\; \lambda_{84} \;) \end{array}$

(3) ZDR Pixel Coordinates (r, c) at (x, y)

 $r = round (y_0 - y)$ $c = round (x - x_0)$

B.4 <u>Source Graphic Datum Coordinates (ϕ_{src} , λ_{src}) from WGS 84 Coordinates (ϕ_{84} , λ_{84})</u>

Parameters Used:

Parameter	Description	<u>Subfield</u>
a _i	Coefficients of the polynomial for latitude ϕ , i = 17	AX1AX7
b _i	Coefficients of the polynomial for longitude λ , i = 17	BX1-BX7
Sφ	Latitude normalizing scale factor	TSF
Sλ	Longitude normalizing scale factor	GSF
Φ _{off}	Latitude normalizing offset	TTT
λ_{off}	Longitude normalizing offset	GTT

B.4.1 Normalized WGS 84 Coordinates (φ_1, λ_1) at $(\varphi_{84}, \lambda_{84})$

 $\begin{array}{rcl} \varphi_{_1} &=& S\varphi \left(\begin{array}{c} \varphi_{84} - \varphi_{off} \end{array} \right) \\ \lambda_{_1} &=& S\lambda \left(\begin{array}{c} \lambda_{84} - \lambda_{off} \end{array} \right) \end{array}$

B.4.2 Normalized Source Datum Coordinates (ϕ_2 , λ_2) at (ϕ_1 , λ_1)

 $\phi_2 = a_1 + a_2 \phi_1 + a_3 \lambda_1 + a_4 \phi_1 \lambda_1 + a_5 \lambda_1^2 a_6 \phi_1 \lambda_1^2 + a_7 \lambda_1^3$

$$\lambda_{2} = b_{1} + b_{2}\phi_{1} + b_{3}\lambda_{1} + b_{4}\phi_{1}\lambda_{1} + b_{5}\lambda_{1}^{2} + b_{6}\phi_{1}\lambda_{1}^{2} + b_{7}\lambda_{1}^{3}$$

B.4.3 Denormalized Source Datum Coordinates (ϕ_{src} , λ_{src}) at (ϕ_2 , λ_2)

$$\phi_{\rm src} = \phi_2 / S_{\phi} + \phi_{\rm off} \lambda_{\rm src} = \lambda_2 / S_{\lambda} + \lambda_{\rm off}$$

B.5 <u>Source Graphic Projection Coordinates (N, E) from Source Graphic Datum</u> <u>Coordinates (ϕ_{src} , λ_{src})</u>

Parameters Used:

Parameter	Description	<u>Subfield</u>
Ci	Coefficients of the polynomial for Northing, $i = 110$	CX1CXA
di	Coefficients of the polynomial for Easting, $i = 110$	DX1DXA
Sφ	Latitude normalizing scale factor	TSF
Sλ	Longitude normalizing scale factor	GSF
Φ _{off}	Latitude normalizing offset	TTT
λ_{off}	Longitude normalizing offset	GTT
S _N	Northing normalizing scale factor	NSF
S _E	Easting normalizing scale factor	ESF
N _{off}	Northing normalizing offset	NTT
E _{off}	Easting normalizing offset	ETT

B.5.1 Normalized Source Datum Coordinates (ϕ_2 , λ_2) at (ϕ_{src} , λ_{src})

NOTE: (ϕ_2 , λ_2) may also be derived from WGS 84 coordinates as indicated in Section B.4 above.

 $\begin{array}{rcl} \varphi_2 &=& S_{\varphi} \ (\ \varphi_{src} - \varphi_{off} \) \\ \lambda_2 &=& S_{\lambda} \ (\ \lambda_{src} - \lambda_{off} \) \end{array}$

B.5.2 Normalized Northing and Easting (N_n , E_n) at (ϕ_2 , λ_2)

$$N_{n} = c_{1} + c_{2}\phi_{2} + c_{3}\lambda_{2}$$

+ $c_{4}\phi_{2}^{2} + c_{5}\phi_{2}\lambda_{2} + c_{6}\lambda_{2}^{2}$
+ $c_{7}\phi_{2}^{3} + c_{8}\phi_{2}^{2}\lambda_{2} + c_{9}\phi_{2}\lambda_{2}^{2} + c_{10}\lambda_{2}^{3}$
$$E_{n} = d_{1} + d_{2}\phi_{2} + d_{3}\lambda_{2}$$

+ $d_{4}\phi_{2}^{2} + d_{5}\phi_{2}\lambda_{2} + d_{6}\lambda_{2}^{2}$

+
$$d_7\phi_2^3$$
 + $d_8\phi_2^2\lambda_2$ + $d_9\phi_2\lambda_2^2$ + $d_{10}\lambda_2^3$

Annex B - ARC System To **ASRP** Edition 1.2 March 1995

B.5.3 Denormalized Northing and Easting (N , E) at (N_n , E_n)

 $N = (N_n / S_N) + N_{off}$ $E = (E_n / S_E) + E_{off}$

based on the identities

$$\begin{aligned} &N_n = S_N(N - N_{off}) \\ &E_n = S_E(E - E_{off}) \end{aligned}$$

NOTE: Northings and Eastings computed here pertain only to the source graphic's geographic projection graticule, and do not provide values related to any grid which may be printed on the chart.

B.6 Computation of Constants A_{sz} and B_s

Pixel spacing constants and spacing intervals for all zones at the scale 1:1,000,000 are shown in Table B-1 below.

	Zon	e Limit	N	lominal Pix	el Spacing ²	
Zone Number	Equator ward	Pole ward	А	В	Lon (microns)	Lat (microns)
1,10	0	32	369664	400384	99.9	99.9
2,11	32	48	302592	400384	99.9	99.9
3,12	48	56	245760	400384	100.0	99.9
4,13	56	64	199168	400384	99.9	99.9
5,14	64	68	163328	400384	99.7	99.9
6,15	68	72	137216	400384	99.7	99.9
7,16	72	76	110080	400384	99.8	99.9
8,17	76	80	82432	400384	100.0	99.9
9,18	80	90	400384	400384	99.9	99.9

NOTES:

1.

Latitudes are shown unsigned for convenience.

2. Measured at the latitude which gives equal stretch and shrink at zone limits on the WGS 84 ellipsoid.

Table B-1: Pixel Spacing Constants A and B

To compute the pixel spacing constants for a graphic at scale 1:S in zone Z (i.e., \mathbf{A}_{sz} and \mathbf{B}_{s}), first compute the real scale factor **N** using the following equation:

The **A** and **B** values for 1:1,000,000 are multiplied by **N** and the results rounded up to the next multiple of 512 to give the values A_{sz} and B_s .

NOTE: The **A** and **B** values provided with the ASRP image data are <u>already</u> <u>adjusted</u> for the scale and zone of the image data.

B.7 Computation of Coordinates ϕ_0 and λ_0

Parameters Used:

<u>Parameter</u>	Description	<u>Subfield</u>
A _{SZ}	East-West pixel spacing at scale 1:S in zone Z.	ARV
B _S	North-South pixel spacing at scale 1:S	BRV

The coordinates of the image origin (ϕ_0, λ_0) depend on the pixel spacing constants adjusted for the scale and zone of the image data.

The width of the pixel is $360^{\circ}/A_{SZ}$ in the E-W direction and $360^{\circ}/B_{S}$ in the N-S direction. For polar zones, $A_{SZ} = B_{S}$.

Let $(\phi_{UL}, \lambda_{UL})$ denote the WGS 84 coordinates of the upper left point of the image. For non-polar zones, ϕ_{UL} is the northernmost latitude and λ_{UL} is the westernmost longitude.

B.7.1 Non-Polar Case.

Let $\triangle \phi$ and $\triangle \lambda$ denote the length of a tile of 128 by 128 pixels.

 $\triangle \phi = 46080^{\circ}/\mathbf{B}_{S}$ $\triangle \lambda = 46080^{\circ}/\mathbf{A}_{S7}$

 $\phi_{0 \text{ is }} \phi_{UL}$ rounded <u>up</u> to the next integral multiple of $\triangle \phi$ (to ensure an exact number of tiles to the Equator). Equivalently, ϕ_{0} is $n(\triangle \phi)$ where n is $\phi_{UL}/\triangle \phi$ rounded up to an integer.

 λ_0 is λ_{UL} rounded <u>down</u> to the next integral multiple of $\Delta\lambda$ (to ensure an exact number of tiles to the Prime Meridian). Equivalently, λ_0 is $n(\Delta\lambda)$ where n is $\lambda_{UL}/\Delta\lambda$ rounded down to an integer.

B.7.2 North Polar Case.

$\mathbf{x}_0 = (\mathbf{B}_{\mathrm{S}}/360^\circ)(90^\circ \mathbf{-} \phi_{\mathrm{UL}}) \sin(\lambda_{\mathrm{UL}})$
$y_0 = -(\mathbf{B}_S/360^\circ)(90^\circ - \phi_{UL}) \cos(\lambda_{UL})$
$\phi_0 = 90^\circ - (x_0^2 + y_0^2)^{1/2} (360^\circ / \mathbf{B}_S)$
$\lambda_0 = \arccos[-y_0/(x_0^2 + y_0^2)^{1/2}]$
$\lambda_0 = -\arccos[-y_0/(x_0^2 + y_0^2)^{1/2}]$
$\lambda_0 = 0^{\circ}$

rounded down to the next multiple of 128. rounded up to the next multiple of 128.

if
$$x_0 > 0$$
 or $x_0 = 0$, $y \neq 0$
if $x_0 < 0$
if $x_0 = y_0 = 0$

where the range of arccos is 0° to 180° .

B.7.3 South Polar Case.

$\mathbf{x}_0 = (\mathbf{B}_{\mathrm{S}}/360^\circ)(90^\circ + \phi_{\mathrm{UL}}) \sin (\lambda_{\mathrm{UL}})$	rounded down to the next multiple of 128.
$y_0 = (\mathbf{B}_S/360^\circ)(90^\circ + \phi_{UL}) \cos(\lambda_{UL})$	rounded up to the next multiple of 128.
$\phi_0 = -90^\circ + (x_0^2 + y_0^2)^{1/2} (360^\circ / \mathbf{B}_S)$	
$\lambda_0 = \arccos[y_0 / (x_0^2 + y_0^2)^{1/2}]$	if $x_0 > 0$ or $x_0 = 0$, $y \neq 0$
$\lambda_0 = -\arccos[y_0/(x_0^2 + y_0^2)^{1/2}]$	if x ₀ < 0
$\lambda_0 = 0^{\circ}$	if $x_0 = y_0 = 0$

where the range of arccos is 0° to 180°.

B.8 Maximum Stretch and Shrink Values for Zones

The maximum stretch at the poleward limit (or shrink at the equatorward limit) for each zone is shown in Table B-2 below. Also indicated is the latitude ("mid") at which nominal pixel spacing is defined. These values apply for all scales of data.

7	Latitude (degrees)		Maximum Stretch or	
Zone	Equator ward	mid	Pole ward	Shrink (%)
1, 10	0	22.94791772	32	8.54
2, 11	32	41.12682127	48	12.53
3, 12	48	52.28859923	56	9.36
4, 13	56	60.32378942	64	12.92
5, 14	64	66.09421768	68	8.17
6, 15	68	70.10896259	72	10.09
7, 16	72	74.13230145	76	13.01
8, 17	76	78.17283750	80	18.03
9, 18	80		90	

Table B-2: Mid-Latitude and Maximum Stretch and/or Shrink (Exclusive of Overlap)

Annex B. ATTRIBUTE AND VALUE CODES

NOTE. The following is ONLY that subset of DIGEST Edition 1.2 Part 4 Annex B attributes which is applicable to the ASRP specification.

CDP — Calendar Date Type

The type of report or activity.

CDP	000	Unknown
	001	Aerial Photography
	002	Air Information
	003	Approximate
	004	Field Classification
	005	Compilation
	006	Copyright
	007	Creation
	008	Digitizing
	009	Distribution/Dispatching
	010	Downgrading
	011	Drafting/Scribing/Drawing
	012	Edition
	013	Field Examination
	014	Intelligence
	015	Date Interpretable
	016	Processing
	017	Print/Publication
	018	Receipt
	019	Source
	020	Earliest Date of Source
	021	Latest Date of Source
	022	Specifications
	023	Survey
	024	Up-to-dateness/revision
	025	Map Edit
	026	Information as of
	027	Perishable Information Date
	028	Cycle Date
	029	Significant Date
	030	Date of Magnetic Information
	999	Other

NST — Navigation System Types

Type of equipment or system used in electronic navigation

NST	000	Unknown
	001	Circular Radio Beacon
	002	CONSOL
	003	DECCA
	004	Radio Direction Finding
	005	Directional Radio Beacon
	006	Distance Finding
	007	Long Range Navigation System (LORAN)
	008	OMEGA
	009	VALUE INTENTIONALLY LEFT BLANK
	010	Radar Responder Beacon (RACON)
	011	Radar
	012	Radio
	013	Radio Telephone
	014	VALUE INTENTIONALLY LEFT BLANK
	015	TV
	016	Microwave
	017	Non-Directional Radio Beacon (NDB)
	018	VALUE INTENTIONALLY LEFT BLANK
	019	Radio Range (RNG)
	020	VHF Omni Directional Radio Range (VOR)
	021	VHF Omni Directional (VOR/DME)
	022	VHF Omni Directional (VORTAC)
	023	Tactical Air Navigation Equipment (TACAN)
	024	Instrument Landing System (ILS)
	025	VALUE INTENTIONALLY LEFT BLANK
	026	Localizer (LOC)
	027	VALUE INTENTIONALLY LEFT BLANK
	028	Simplified Directional Facility (SDF)
	029	Landing Distance Available (LDA)
	030	Microwave Landing System (MLS)
	031	Fan Marker
	032	Bone Marker
	033	Radio Telegraph
	034	Ground Controlled Approach (GCA)
	035	Radar Antenna
	037	Precision Approach Radar (PAR)

038	Aeronautical Radio
039	VALUE INTENTIONALLY LEFT BLANK
040	Radio Beacon
041	Rotating Loop Radio Beacon
042	Visual Flight Rules (VFR) Test Signal Maker
043	VALUE INTENTIONALLY LEFT BLANK
044	Consol Radio Beacon
045	Aeronautical Radio Range
046	Radar Station
047	Hifix
048	Hyperfix
049	Tricolor Panel
999	Other

Code		Sounding Datum
MHHW	1	Mean Higher High Water
MHW	2	Mean High Water
MHWN	3	Mean High Water Neaps
MHWS	4	Mean High Water Springs
MLLW	5	Mean Lower Low Water
MLW	6	Mean Low Water
MLWN	7	Mean Low Water Neaps
MLWS	8	Mean Low Water Springs

Code		Vertical Reference
GEOD	1	Geodetic (All elevations in the data set are referenced to the ellipsoid of the specified datum.)
MSL	2	Mean Sea Level (All elevations in the data set are referenced to the geoid of the specified datum.)

Enclosure 1 to **ASRP** Edition 1.2 March 1995 DIGEST Part 4 Edition 1.2 January 1994 Annex B - Attribute and Value Codes

THIS PAGE IS INTENTIONALLY BLANK

7 GRID CODES

Table 7-1 provides the allowable grids and their codes for the Grid System field.

Table 7-1 Grid Codes

	Grid Description	Code
1	Aden Zone	AD
2	Afghanistan Gauss-Kruger Grid	AF
3	Air Defense Grid	AG
4	Air Support Grid	AI
5	Alabama Coordinate System	AJ
6	Alaska Coordinate System	AK
7	Algeria Zone	AL
8	Albania Bonne Grid	AM
9	Alpha-Numeric (Atlas) Grid	AN
10	Arbitrary Grid	AO
11	American Samoa Coordinate System	AP
12	Argentine Gauss-Kruger Conformal Grid	AQ
13	Artillery Referencing System	AR
14	Arizona Coordinate System	AS
15	Australia Belt	AU
16	Arkansas Coordinate System	AV
17	Australian Map Grid	AW
18	Azores Gauss Conformal Grid	AX
19	Azores Zone	AZ
20	Baku 1927 Coordinate System	BA
21	Bavaria Solder Coordinate System	BB
22	Belgium Lambert Grid	BC
23	Belgium Bonne Grid	BE
24	Brazil Gauss Conformal Grid	BF
25	Borneo Rectified Skew Orthomorphic Grid	BO
26	British West Indies Grid	BW
27	California Coordinate System	CB
28	Canada British Modified Grid	CD
29	Ceylon Belt (Transverse Mercator)	CE
30	Canary Islands (Spanish~ Lambert Grid)	CF
31	Chile Gauss Conformal Grid	CG
32	China Belt	СН
33	Canary Islands Zone	CI
34	China Lambert Zone	CJ
35	Colorado Coordinate Zone	CK
36	Connecticut Coordinate System	СМ
37	Caspian Zone	CN
38	Costa Rica Lambert Grid	CO
39	Crimea Grid	CQ
40	Crete Zone	CR

Enclosure 2 to ASRP Edition 1.2 March 1995

41	Cuba Lambert Grid	СТ
42		CU
43	Cape Verde Islands Zone	CV
44	British Cassini Grid	C.W
45	Czechoslovak Uniform Cadastral Coordinate System	CX
40 76	Cyprus Grid	
40 17	Czechoslovak Military Grid	C7
77 / Q	Dapube Zone	
40 40	Dahamay Balt	
49 50	Danonley Delt Danmark Conoral Staff Crid	
50	Delimark General Stall Glu	
51	Denaware Coordinate System	
52	Dominican Lambert Gru	
53	Denmark Geodelic Institute System 1924	DJ
54	Cape verde Peninsula Grid	
55	East Africa Belt	EA
56	English Belt	EB
5/	Eqypt Gauss Conformal Grid	ED
58	El Salvador Lambert Grid	EE
59	Estonian Grid	EF
60	Egypt Purple Belt	EP
61	Egypt Red Belt	ER
62	Egypt 35 Degree Belt	ET
63	Fernando Poo Gauss Grid	FA
64	Fiji Grid	FB
65	Florida Coordinate System	FC
66	French Bonne Grid	FD
67	French Guiana Gauss Grid	FE
68	French Somaliland Gauss-LaBorde Grid	FF
69	French Indochina Grid	FI
70	Franz Josef Land Zone	FJ
71	French Lambert Grid	FL
72	Formosa (Taiwan) Gauss-Schreiber Coordinate System	FO
73	French Equatorial Africa Grid	FS
74	Gabon Belt	GA
75	Gauss-Boaga Grid (Transverse Mercator)	GB
76	Gabon Gauss Conformal Grid	GC
77	Geodetic	GD
78	Guadeloupe Gauss-LaBorde Grid	GF
79	Colombia Gause Conformal Grid	GG
80	Sweden Gauss-Hannover Grid	GH
81	Georgia Coordinate System	GI
82	Gauss-Kruger Grid (Transverse Mercator)	GK
83	Greece Azimuthal Grid	GL
84	German Army Grid (DHG)	GN
85	Ghana National Grid	GO
86	Greece Bonne Grid	GP

DIGEST Part 3 Edition 1.2 January 1994 7 - Grid Codes

07	Crasso Conjeel Meeklenhurg Coardinates	<u> </u>
0/	Greece Conical Mecklenburg Coordinates	
88	Geographic Reference System (GEOREF)	GK
89	Greece Conical Mecklenburg Coordinate (New	GM
	Numbering)	
90	Greenland Lambert Grid	GT
91	Guinea Zone	GU
92	Guam Coordinate System	GV
93	Guatemala Lambert Grid	GW
94	Guvana Transverse Mercator Grid	GY
95	Haiti Lambert Grid	HB
96	Hawaii Coordinate System	HC
97	Hawaii Grid	НО
08	Honduras Lambort Grid	
90	Hong Kong New System Coopini Crid	
99	Hungary Storeographic Crid	
100	Hong Kong Colony Crid	
101	Hong Kong Colony Grid	HK
102	lidano Coordinate System	IA
103	Illinois Coordinate System	IB
104	Indiana Coordinate System	IC
105	Indonesia Mercator Grid	ID
106	Indonesia Polyhedric Grid	IE
107	Iowa Coordinate System	IF
108	Ivory Coast Azimuthal Grid	IG
109	Irish Cassini Grid	IH
110	Ivory Coast Belt	IJ
111	Irish Transverse Mercator Grid	IK
112	Iceland New Lambert Zone	IL
113	India Zone	IN
114	Iberian Peninsula Zone	IP
115	Iraq Zone	IQ
116	Iraq National Grid	IR
117	Italy Zone	IT
110	Ivy - Found on an HA in Marshall Islands	IV
110	leoland Zono	17
119	Iceration Cost Crid	
120	Jaman Diana Destangular Coordinate Oveters	JA
121	Japan Plane-Rectangular Coordinate System	JR
122	Japan Gauss-Schreiber Grid	JC
123	Jonore Grid	JO
124	Austria Gauss-Kruger Grid	KA
125	Bulgaria Gauss-Kruger Grid	KB
126	Katanga Grid	KC
127	Kansas Coordinate System	KD
128	Kentucky Coordinate System	KE
129	Finland Gauss-Kruger Grid	KF
130	German Gauss-Kruger Grid	KG
131	Kenya Colony Grid	КН

132	Korea Gauss-Schreiber Coordinate System	KJ
133	Louisiana Coordinate System	KK
134	Lithuania Gauss-Kruger Grid	KL
135	Kwantung Province Grid	KN
136	Turkey Gauss-Kruger Grid	KT
137	Kwangsi Province Grid	KW
138	Luxembourg Gauss-Kruger Grid	KX
139	Lambert Conformal Conic Grid	LC
140	Latvia Coordinate System	LD
141	Levant Zone	LE
142	Levant Stereographic Grid	LF
143	Liberia Rectified Skew Orthomorphic Grid	LG
144	Libya Zone	LI
145	Sirte (Libya) Lambert Grid	LL
146	Malaya Grid	MA
147	Malta Belt	MB
148	Maldive-Chagos Belt	MC
149	Madiera Zone	MD
150	Mediterranean Zone	ME
151	Maine Coordinate System	MF
152	Malaya Rectified Skew Orthomorphic Grid	MG
153	Military Grid Referense System	MGRS
154	Martinique Gauss Grid	MH
155	Maryland Coordinate System	MI
156	Mexican Lambert Grid	MK
157	Michigan Coordinate System	ML
158	Mecca-Muscat Zone	MM
159	Minnesota Coordinate System	MN
160	Madagascar Grid (Laborde)	MO
161	Mississippi Coordinate System	MP
162	Morocco Zone	MQ
163	Missouri Coordinate System	MT
164	Mauritius Zone	MU
165	Montana Coordinate System	MV
166	Mozambique Lambert Grid	MW
167	Mozambique Polyconic Grid	MX
168	Massachusetts Coordinate System	MJ
169	Northwest Africa Zone	NA
170	Nigeria Colony Belt	NC
171	National Grid of Great Britain	ND
172	Northern European Zone	NE
173	Nebraska Coordinate System	NF
174	Numeric Grid	NG
175	Niger Zone	NI
176	Netherlands Stereographic Grid (Old Numbering)	NJ
177	North Korea Gauss-Kruger Grid	NK

178	Netherlands Stereographic Grid (New Numbering)	NL
179	Netherlands East Indies Equatorial Zone British Metric	NM
	Grid (Lambert)	
180	Nord de Guerre Zone	NO
181	Nevada Coordinate System	NP
182	New Sierra Leone Colony Grid	NQ
183	New York Coordinate System	NR
184	Netherlands East Indies Southern Zone	NS
185	New Zealand National Grid	NT
186	Nicaragua Lambert Grid	NU
187	Niger Belt	NV
188	North Carolina Coordinate System	
180	North Dakota Coordinate System	NY
103	Notifi Dakota Coordinate System	
101	Netrienands East indies Equatorial Zone 0.5. Taid Ond	N7
102	New Zealahu Dell Northorn Malaya Grid	
102	Norway Gauss Krugor Grid	
193	Ohio Coordinato System	
194	Ohio Coordinate System	
195	Orange Depart Net	
190	Orange Report Net	
197	Delecting Belt	03
198	Palesline Bell	
199	Panama Lampert Gliu	
200	Palestine Civil Grid (Cassini)	
201	Paraguay Gauss-Kruger Grid	
202	Peiping Coordinate System of 1954	PE
203	Pennsylvania Coordinate System	
204	Peru Polyconic Grid	
205	Philippine Plane Coordinate System	PJ
206	Poland Gauss-Kruger Grid	PK
207	Poland Quasi-Stereographic Grid	PL
208	Philippine Polyconic Grid	PP
209	Portugal Bonne Grid, Old	PQ
210	Portugal Bonne Grid, New	PR
211	Portugal Gauss Grid	PS
212	Puerto Rico Coordinate System	PT
213	Puerto Rico Lambert Grid	PU
214	Qatar Grid	QA
215	Qatar Peninsula Grid	QU
216	Russian Belt	RB
217	Reunion Gauss Grid	RC
218	Rhode Island Coordinate System	RD
219	Rumania Bonne Grid	RE
220	Soviet Coordinate System of 1942	RF
221	Rumania Lambert-Cholesky Grid	RH

222	Rumania Stereographic Grid	RI
223	Pulkovo Coordinate System of 1932	RT
224	South Africa Belt	SA
225	Senegal Gauss Conformal Grid (Belt)	SB
226	South Africa Coordinate System (Republic of South Africa)	SD
227	Senegal Belt	SE
228	South Carolina Coordinate System	SF
229	Sahara Zone	SH
230	South Dakota Coordinate System	SI
231	South Libya Zone	SJ
232	Sarawak Grid	SK
233	Spain Lambert Grid	SL
234	Southern New Guinea Grid	SN
235	South Georgia Lambert Grid	SQ
236	South Syria Lambert Grid	SR
237	Spanish North-Morocco Lambert Grid	SS
238	Svalbard Gauss-Kruger Grid	SV
239	Svobodny 1935 Coordinate System	SX
240	Seychelles Belt	SY
241	Spitzbergen Zone	SZ
242	Tanganyika Territorial Grid	TA
243	Tashkent 1875 Coordinate System	ТВ
244	Tennessee Coordinate System	ТС
245	Texas Coordinate System	TD
246	Tobago Grid	TE
247	Trinidad Grid	TF
248	Trucial Coast Cassini Grid	TG
249	Trucial Coast Transverse Mercator Grid	TH
250	Turkey Bonne Grid	TI
251	Tunisia Zone	TN
252	Uganda Cassini Coordinate System	UA
253	Unidentified Grid	UB
254	Uruguay Gauss-Kruger Grid	UC
255	Utah Coordinate System	UD
256	Universal Polar Stereographic System	UP
257	U.S. Polyconic Grid System	US
258	Universal Transverse Mercator	UT
259	Vermont Coordinate System	VA
260	Virginia Coordinate System	VB
261	Venezuela Modified Lambert Grid	VE
262	Viet Nam Azimuthal Grid	VI
263	West Malaysia Rectified Skew Orthomorphic(Metric)Grid	WA
264	Switzerland Bonne Grid	WB
265	Switzerland Conformal Oblique Cylindrical Grid	WC
266	West Virginia Coordinate System	WD
267	Wisconsin Coordinate System	WE

268	Wyoming Coordinate System	WF
269	World Polyconic System	WP
270	Yugoslavia Gauss-Kruger Grid (Not Reduced)	YA
271	Yugoslavia Reduced Gauss-Kruger Grid	YG
272	Yunnan Province Grid	YU

Enclosure 2 to ASRP Edition 1.2 March 1995 DIGEST Part 3 Edition 1.2 January 1994 7 - Grid Codes

THIS PAGE IS INTENTIONALLY BLANK

8 ELLIPSOID CODES

Table 8-1 provides the allowable ellipsoids and their codes for the Ellipsoid field.

Table 8-1	Ellipsoid Codes
-----------	-----------------

Ellipsoid		Code
1	Modified Airy	AAM
2	Airy	AAY
3	Australian National	AUN
4	Bessel 1841	BES
5	Clarke 1858	CLE
6	Clarke 1880	CLJ
7	Clarke 1866	CLK
8	Everest	EVE
9	Modified Everest	EVM
10	Modified Fischer 1960	FAM
11	Fischer	FIS
12	Geodetic Reference System 1967	GRE
13	Geodetic Reference System 1980	GRS
14	Helmert 1906	HEL
15	Hough	HOU
16	Indonesian 1974	IDN
17	International	INT
18	Krassovsky	KRA
19	South American 1969	SAM
20	Walbeck	WAL
21	World Geodetic System 1960	WGA
22	World Geodetic System 1966	WGB
23	World Geodetic System 1972	WGC
24	World Geodetic System 1984	WGE

Enclosure 3 to ASRP Edition 1.2 March 1995 DIGEST Part 3 Edition 1.2 January 1994 8 – Ellipsoid Codes

THIS PAGE IS INTENTIONALLY BLANK

9 DATUM CODES

Table 9-1 provides the allowable datums and their codes for the Geodetic Datum fields. Sounding Datum and the Vertical Reference System field usage are also covered in the Feature and Attribute Coding Catalogue (Part 4).

	Geodetic Datums	Code
1	Adindan	ADI
2	Adindan (Ethiopia)	ADIA
3	Adindan (Sudan)	ADIB
4	Adindan (Mali)	ADIC
5	Adindan (Senegal)	ADID
6	Adindan (Mean value: Ethiopia and Sudan)	ADIM
7	Afgooye (Somalia)	AFG
8	Ain el Abd 1970 (Bahrain Island)	AIN
9	Anna 1 Astro (Cocos Islands)	ANO
10	Arc 1950	ARF
11	Arc 1950 (Botswana)	ARFA
12	Arc 1950 (Lesotho)	ARFB
13	Arc 1950 (Malawi)	ARFC
14	Arc 1950 (Swaziland)	ARFD
15	Arc 1950 (Zaire)	ARFE
16	Arc 1950 (Zambia)	ARFF
17	Arc 1950 (Zimbabwe)	ARFG
18	Arc 1950 (Mean value: Botswana, Lesotho, Malawi,	ARFM
	Swaziland, Zaire, Zambia, and Zimbabwe)	
19	Arc 1960 (Kenya)	ARSA
20	Arc 1960 (Tanzania)	ARSB
21	Arc 1960 (Mean value: Kenya, Tanzania)	ARSM
22	Ascension Island 1958 (Ascension Island)	ASC
23	Astro Station 1952 (Marcus Island)	ASQ
24	Astro Beacon "E" (Iwo Jima Island)	AIF
25	Average Terrestrial System (Atlantic Datum) 1997	AIS
26	Australian Geod. 1966 (Australia and Tasmania Is.)	AUA
27	Australian Geod. 1984 (Australia and Tasmania Is.)	AUG
28	Djakarta (Batavia) (Sumatra Island, Indonesia)	BAI
29	Bermuda 1957 (Bermuda Islands)	
30	Buyera Observatory (Colombia)	
31	Dukit Millipali (Daliyka & Delitulli Isialius,	DUK
30	Bukit Rimpah	BLID
32 33	Canton Astro 1966 (Phoenix Islands)	CAO

|--|

34	Cape Canaveral (Mean value: Florida and Bahama	CAC
	Islands)	
35	Campo Inchauspe (Argentina)	CAI
36	Cape (South Africa)	CAP
37	Camp Area Astro (Camp McMurdo Area, Antartica)	CAZ
38	Carthage (Tunisia)	CGE
39	Chua Astro (Paraguay)	CHG
40	Chatham 1971 (Chatham Island, New Zealand)	CHI
41	Chua Astro	CHU
42	Corrego Alegre (Brazil)	COA
43	Guyana CSG67	CSG
44	GUX 1 Astro (Guadacanal Island)	DOB
45	Easter Island 1967 (Easter Island)	EAS
46	European 79	ENB
47	Wake-Eniwetok 1960 (Marshall Islands)	ENW
48	European 1979 (Mean value: Austria, Finland,	EUQ
	Netherlands, Norway, Spain, Sweden, and	
	Switzerland)	
49	European 1950 (Mean value)	EUR
50	European 1950 (Western Europe: Austria,	EURA
	Denmark, France, Federal Republic of Germany,	
	Netherlands, and Switzerland)	
51	European 1950 (Greece)	EURB
52	European 1950 (Norway and Finland)	EURC
53	European 1950 (Portugal and Spain)	EURD
54	European 1950 (Cyprus)	EURE
55	European 1950 (Egypt)	EURF
56	European 1950 (Iran)	EURH
57	European 1950 (Sardinia)	EURI
58	European 1950 (Sicily)	EURJ
59	European 1950 (England, Channel Islands, Ireland,	EURK
	Northern Ireland, Scotland, Shetland Islands, and	
	Wales)	
60	European 1950 (Mean value: Austria, Belgium,	EURM
	Denmark, Finland, France, Federal Republic of	
	Germany, Gibraltar, Greece, Italy, Luxembourg,	
	Netherlands, Norway, Portugal, Spain, Sweden, &	
	Switzerland)	
61	Oman (Oman)	FAH
62	Observatorio 1966 (Corvo and Flores Islands,	FLO
	Azores)	
63	GAN Datum (Addu Atoll, Republic of Maldives)	GAA
64	German	GDA
65	Geodetic Datum 1949 (New Zealand)	GEO
66	Ghana	GHA
67	DOS 1068 0220 (Cize Jelend, New Coorgie Jelende)	
-----	--	------
07		GIZ
68	SVV Base (Faial, Graciosa, Pico, Sao Jorge, and	GRA
	Terceira Island, Azores)	
69	Genung Segara (Kalimantan Island, Indonesia)	GSE
70	G. Serindung	GSF
71	Guam 1963	GUA
72	Guadeloupe Ste. Anne	GUD
73	Herat North (Afganistan)	HEN
74	Hermannskogel	HER
75	Prov. S. Chilea.i (S. Chile, 53 S.)	HIT
76	Hjorsey 1955 (Iceland)	HJO
77	Hong Kong 1963 (Hong Kong)	HKD
78	Hu-tzu-shan	HTN
79	Bellevue (IGN) (Efate and Erromango Islands)	IBE
80	Italian	IDA
81	Indian	IND
82	Indian (Thailand and Vietnam)	INDA
83	Indian (Bangladesh, India, and Nepal)	INDB
84	Ireland 1965	IRE
85	Ireland 1965 (Ireland and Northern Ireland)	IRL
86	ISTS 073 Astro 1969 (Diego Garcia)	IST
87	Johnston Island 1961 (Johnston Island)	JOH
88	Kandawala (Sri Lanka)	KAN
89	Kertau 1948 (West Malaysia and Singapore)	KEA
90	Kerguelen Island 1949 (Kerguelen Island)	KEG
91	L.C. 5 Astro 1961 (Cayman Brac Island)	LCF
92	Liberia 1964 (Liberia)	LIB
93	Local Astro.	LOC
94	Luzon	LUZ
95	Luzon (Philipines except Mindanao Island)	LUZA
96	Luzon (Mindanao Island)	LUZB
97	Martinique Fort-Desaix	MAR
98	Marco Astro (Salvage Islands)	MAA
99	Massawa (Eritrea, Ethiopia)	MAS
100	Mayotte Combani	MAY
101	Merchich	MER
102	Merchich (Morocco)	MER
103	Midway Astro 1961 (Midway Island)	MID
104	Mahe 1971 (Mahe Island)	MIK
105	Minna (Nigeria)	MIN
106	Rome 1940 (Sardinia Island)	MOD
107	Montjong Lowe	MOL

108	Viti Levu 1916 (Viti Levu Island, Fiji Islands)	MVS
109	Nahrwan (Masirah Island, Oman)	NAHA
110	Nahrwan (United Arab Emirates)	NAHB
111	Nahrwan (Saudi Arabia)	NAHC
112	Naparima (BWI Trinidad and Tobago)	NAP
113	North American 1983 (Mean Value: Alaska, Canada,	NAR
	CONUS, Mexico, and Central America)	
114	North American 1927 (Mean value)	NAS
115	North American 1927 (Eastern US)	NASA
116	North American 1927 (Western US)	NASB
117	North American 1927 (Mean value: CONUS)	NASC
118	North American 1927 (Alaska)	NASD
119	North American 1927 (Mean value: Canada)	NASE
120	North American 1927 (Alberta and British Columbia)	NASF
121	North American 1927 (Newfoundland, New	NASG
	Brunswick, Nova Scotia and Quebec)	
122	North American 1927 (Manitoba and Ontario)	NASH
123	North American 1927 (Northwest Territories and	NASI
	Saskatchewan)	
124	North American 1927 (Yukon)	NASJ
125	North American 1927 (Mexico)	NASL
126	North American 1927 (Central America - Belize,	NASN
	Costa Rica, El Salvador, Guatemala, Honduras, and	
407	Nicaragua) Narth Amariaan 4007 (Canal Zana)	
127	North American 1927 (Canal Zone)	
120	North American 1927 (Campbean, Barbados, Calcos	NASP
	Islands, Cuba, Dominican Republic, Grand Cayman,	
120	North American 1027 (Bahamas, except San	NASO
129	Salvador Island)	NASQ
130	North American 1927 (San Salvador Island)	NASR
130	North American 1927 (Cuba)	NAST
132	North American 1927 (Haves Peninsula, Greenland)	NASU
133	North American 1983	NAX
134	Nigeria	NIG
135	Old Egyptian (Egypt)	OEG
136	Ordnance Survey of Great Britain	OGB
137	Ord, Survey G.B. 1936 (England)	OGBA
138	Ord. Survey G.B. 1936 (England, Isle of Man, and	OGBB
	Wales)	
139	Ord. Survey G.B. 1936 (Scotland and Shetland	OGBC
	Islands)	
140	Ord. Survey G.B. 1936 (Wales)	OGBD
141	Ord. Survey G.B. 1936 (Mean value: England, Isle of	OGBM
	Man, Scotland, Shetland, and Wales)	

142	Old Hawaiian	OHA
143	Old Hawaiian (Hawaii)	OHAA
144	Old Hawaiian (Kauai)	OHAB
145	Old Hawaiian (Maui)	OHAC
146	Old Hawaiian (Oahu)	OHAD
147	Old Hawaiian (Mean value)	OHAM
148	Pitcairn Astro 1967 (Pitcairn Island)	PIT
149	Pico de las Nieves (Canary Islands)	PLN
150	SE Base (Porto Santo) (Porto Santo & Madeira	POS
	Islands)	
151	Provisional South American 1956	PRP
152	Prov. S. Amer. 1956 (Northern Chile near 19 degrees	PRPA
	south)	
153	Prov. S. Amer. 1956 (Southern Chile near 43	PRPC
	degrees south)	
154	Prov. S. Amer. 1956 (Columbia)	PRPD
155	Prov. S. Amer. 1956 (Ecuador)	PRPE
156	Prov. S. Amer. 1956 (Guyana)	PRPF
157	Prov. S. Amer. 1956 (Peru)	PRPG
158	Prov. S. Amer. 1956 (Venezuela)	PRPH
159	Prov. S. Amer. 1956 (Mean value: Bolivia, Chile,	PRPM
	Colombia, Ecuador, Guyana, Peru, & Venezuela)	
160	Puerto Rico (Puerto Rico and Virgin Islands)	PUR
161	Qatar National (Qatar)	QAT
162	Qornog (South Greenland)	QUO
163	Reunion 1947	REU
164	Santo (DOS) 1965 (Espirito Santo Island)	SAE
165	South American 1969 (Argentina)	SANA
166	South American 1969 (Bolivia)	SANB
167	South American 1969 (Brazil)	SANC
168	South American 1969 (Chile)	SAND
169	South American 1969 (Columbia)	SANE
170	South American 1969 (Ecuador)	SANF
171	South American 1969 (Guyana)	SANG
172	South American 1969 (Paraguay)	SANH
173	South American 1969 (Peru)	SANI
174	South American 1969 (Trinidad and Tobago)	SANK
175	South American 1969 (Venezuela)	SANL
176	South American 1969 (Mean value: Argentina,	SANM
	Bolivia, Brazil, Chile, Columbia, Ecuador, Guyana,	
	Paraguay, Peru, Trinidad and Tobago, and	
	Venezuela)	
177	Sao Braz (Sao Miguel, Santa Maria Islands, Azores)	SAO
178	Sapper Hill 1943 (East Falkland Islands)	SAP
179	Schwarzeck (Namibia)	SCK

180	Astro Dos 71/4 (St. Helena Island)	SHB
181	Sierra Leone 1960	SIB
182	South Asia (Southeast Asia, Singapore)	SOA
183	St. Pierre et Miquelon 50	STP
184	Tananarive Obsv. 1925	TAN
185	Tristan Astro 1968 (Tristan da Cunha)	TDC
186	Timbali 1948 (Brunei and East Malaysia - Sarawak	TIL
	and Sabah)	
187	Tokyo (Mean value)	TOK
188	Tokyo (Japan)	TOYA
189	Tokyo (Korea)	TOYB
190	Tokyo (Okinawa)	TOYC
191	Tokyo (Mean value: Japan, Korea, and Okinawa)	TOYM
192	Astro Tern Is. 1961 (Tern Island, Hawaii)	TRN
193	Undetermined (processed as if WGS 84)	UND
194	Voirol	VOI
195	World Geodetic System 1960	WGA
196	World Geodetic System 1966	WGB
197	World Geodetic System 1972	WGC
198	World Geodetic System 1984	WGE
199	Yacare (Uruguay)	YAC
200	Zanderij (Surinam)	ZAN

Table 9-1 lists the datums which may be used, and the codes (abbreviations) which may appear in the Geodetic Datum fields. Sounding Datum and the Vertical Reference System field usage are covered in the Feature and Attribute Coding Catalogue (Part 4).

Note: This list is not all-inclusive.

6

PROJECTION CODES AND PARAMETERS

Table 6-1 provides the allowable projections and their codes and parameters for the Dataset Map Projection Group. These codes and parameters are necessary for conversion of digitized map coordinates to geographic coordinates.

	1					
NAME	CODE	PARAMETERS				
		1	2	3	4	
Albers Equal	AC	Central	Std. Parallel	Std. Parallel	Parallel of	
Area		Meridian	Nearer to	Farther from	Origin	
			Equator	Equator	_	
Azimuthal	AK	Longitude of	Latitude of	-	-	
Equal Area		Tangency	Tangency			
Azimuthal	AL	Longitude of	Latitude of	-	-	
Equal Distant		Tangency	Tangency			
Gnomonic	GN	Longitude of	Latitude of	-	-	
		Tangency	Tangency			
Hotine Oblique	RB	Longitude of	Latitude of	Azimuth of	ScaleFactor	
Mercator		Proj. Origin	Proj. Origin	Skew X-Axis	at Proj. Origin	
(Rectified Skew				at Proj. Origin		
Orthomorphic)						
Lambert	LE	Central	Std. Parallel	Std Parallel	Parallel of	
Conformal		Meridian	Nearer to	Farther from	Origin	
Conic			Equator	Equator		
Lambert Equal	LJ	Central	-	-	-	
Area		Meridian				
Mercator	MC	Central	Latitude of	Parallel of	-	
		Meridian	True Scale	Origin		
Oblique	OC	Longitude of	Latitude of	Azimuth of	-	
Mercator		Reference	Reference	Great Circle at		
		Point on	Point on Great	Reference		
		Great Circle	Circle	Point		
Orthographic	OD	Longitude of	Latitude of	-	-	
		Tangency	Tangency			
Polar Stereo-	PG	Central	Latitude of	-	-	
graphic		Meridian	True Scale			
Polyconic	PH	Central	-	-	-	
		Meridian				
Transverse	TC	Central	Central Scale	Parallel of	-	
Mercator		Meridian	Factor	Origin		
Oblique	SD	Longitude of	Latitude of	Scale factor at	-	
Stereographic		Origin	Origin	Origin		
Relative	RC	X-Scale	Y-Scale			
Coordinates		Factor	Factor			

Table 6-1 Projection Codes and Parameters

Enclosure 5 to **ASRP** Edition 1.2 March 1995 DIGEST Part 3 Edition 1.2 January 1994 6 – Projection Codes

13 USE OF CIE VALUES

CIE is an international colour system for defining colour produced by the "Commission Internationale de l'Eclairage". A number of systems for identifying colours, and the difference between colours, have been promulgated by the CIE. These are all based on measuring the Tristimulous values (Red, Green and Blue intensities) of a colour relative to a standard white. The method chosen by the DGIWG is to use the coordinates to the CIE cromacity chart (see Figure 13-1). This is also the method used in the DoD Standard Printing Color Catalog (Reference 27). Of the other two systems, the CIELUV system is more applicable to the TV industry, and the CIELAB system, while providing finer discrimination between similar colours, is unnecessarily complex for the requirements of raster images. It is only necessary to uniquely identify what a colour should be; any difference in hue from the colour printed or captured by the scanner is irrelevant.

Defining accurately and consistently the colours that should appear in the raster image of a map, irrespective of any changes in colour introduced by both the printing and scanning processes, should not be difficult. In most cases the map specification defines what the various colours used in its production should be by reference to a standard colour chart or catalogue. An example of this is Reference 27, which as well as printing sample colours also gives the CIE Values for that colour. Where the standard colour catalogue referenced by a map specification does not give the CIE Values, then these may be obtained by:

- identifying the CIE Values for the catalogue in accordance with Reference 28 which defines the standard white to be used and the method to be adopted; or
- identifying the closest approximation to each colour in Reference 27 and assigning those CIE Values to the local standard colour catalogue. This method should only be used where the precise definition of a colour is not critical (i.e. the map series is only produced and/or scanned by one agency).

Defining what a map colour should be according to a recognized standard will ensure that:

- the colour can be readily identified by the receiving agency or user
- precise consistency of colour can be achieved between samples of the same raster product produced not only by the same agency, but by different agencies; and
- users of applications will not be distracted by changes in colour and luminosity (which is worse) when traversing map boundaries.

Notes: 1. The colour coordinates are given as x,y,Y where Y is the reflectance.

2. The numbers round the rim of the graph are the dominant wavelength n nanometres.

11 COUNTRY CODES

Use US FIPS PUB 10-3 for country codes.

Enclosure 7 to ASRP Edition 1.2 March 1995 DIGEST Part 3 Edition 1.2 January 1994 11 – Country Codes

12 CODES FOR MEDIA RECORDING STANDARDS

Table 12-1 lists the codes for the various media recording standards.

|--|

Media Recording Standard	Code
Non-standard bilateral agreement	0
Magnetic Tape	
 ISO 3788 (1600 PE) 	1
 ISO 5652 (6250 GCR) 	2
ANSI X3.202 (8mm tape)	4
CD-ROM	
• ISO 9660	3

Enclosure 8 to ASRP Edition 1.2 March 1995

10 UNITS OF MEASURE CODES

DIGEST defines units of measurement as referenced by ISO 1000 "SI units and recommendations for the use of their multiples and of certain other units." However, there are certain units outside the SI (Système internationale), some of which are recognized by International Committee for Weights and Measures (CIPM), which need to be included in DIGEST because of their practical importance, i.e. occurrence in DGI datasets. These units have their codes enclosed by parentheses ().

When a compound unit is formed by multiplication of two or more units, it can be indicated in one of the following ways:

N•m or Nm

DIGEST preference is "N \cdot m" to avoid misinterpretation of the blank space.

When a compound unit is formed by dividing one unit by another, it can be indicated in one of the following ways:

<u>m</u> or m/s or m s⁻¹ s

DIGEST preference is "m/s".

Table 10-1 lists the SI, and commonly recognized (shown in parentheses), units of measure which are most likely to occur within a DIGEST dataset, and their codes (abbreviations) for the various Units of Measure fields of the Data Set Parameter Group. They also are referenced in Part 4 — Annex B (Attribute and Value Codes).

Table 10-1 Units of Measure Codes

Unit Code						
	LENGTH					
1.	Micrometres	UM				
2.	Millimetres	MM				
3.	Centimetres	СМ				
4.	Decimetres	DM				
5.	Metres	M				
6.	Kilometres	КМ				
7.	Inches	(IN)				
8.	Feet	(FT)				
9.	Yards	(YD)				
10.	Fathoms	(FM)				
11.	Fathoms and Feet	(FF)				
12.	Statute Miles	(MI)				
13.	Nautical miles	(NM)				
	TIME					
14.	Seconds	S				
15.	Minutes	MIN				
16.	Hours	Н				
17.	Days	D				
SPEED						
18.	Metres per Second	M/S				
19.	Kilometres per Hour	KM/H				
20.	Miles per Hour	(MPH)				
21.	Knots	(KNOT)				
	AREA					
22.	Square metres	(M2)				
23.	Square kilometres	(KM2)				
24.	Hectares	(HA)				
	ANGULAR MEASUREMENT					
25.	Mils	ML				
26.	Seconds (of arc)	(SEC)				
27.	Minutes (of arc)	(MA)				
28.	Degrees (of arc)	(DEG)				

	WEIGHT (MASS)	
29.	Kilograms	KG
30.	Kips	(KIP)
	PRESSURE	
31.	Millibars	MBAR
32.	Hectopascals	HPA
	ELECTRICITY	
33.	Volts	V
34.	Kilovolts	KV
35.	Watts	W
36.	Megawatts	MW
37.	Gigawatts	GW
38.	Amperes	A
39.	Hertz	HZ
40.	Kilohertz	KHZ
41.	Megahertz	MHZ
	MISCELLANEOUS	
42.	Beds	(BED)
43.	Features	(FEATURE)
44.	Lanes/Tracks	(LANE/TRACK)
45.	Levels	(LEVEL)
46	Lines	(LINE)
47.	Occults	(OCCULT)
48.	Percent	(%)
49.	Persons	(PERSON)
50.	Qualifiers	(QUALIFIER)
51.	Structures	(STRUCTURE)
52.	Vehicles	(VEHICLE)

Note: Codes enclosed in parentheses indicate non-ISO 1000 units. The parentheses themselves do not form part of the code.

Enclosure 9 to ASRP Edition 1.2 March 1995 DIGEST Part 3 Edition 1.2 January 1994 10 – Units of Measure

D. DIGITAL GEOGRAPHIC DATA VOLUME TRANSMITTAL FORM

DATA EXCHANGE FORM

<u>Par</u>	rt 1. — Nat	tional Organizations						
1.	SENDER:		2.	ADDRE	ESSEE:			
3.	SECURIT	Y CLASSIFICATION:	т	S	С	R	U	
4.	SPECIAL	HANDLING:						
	Date &	Level of Downgrading:						
	Bi or M	lultilateral agreement(s):						
	Agreer	nent between Country(s):						
	Name /	/ Signature:						·····
	Creatic							. <u></u>
Par	rt 2. — Dai	ta Exchange Specifications	<u>i</u>					
5.a	. EXCHA	NGE MEDIA:						
	Туре:	Mag. Tape:	_	Spec:	Density	/:		
		CD-ROM:	_		1.4 MB	:		
		3.5" Floppy:	_		1.2 MB	•		
		5.25" Floppy:			720 K:			
					Other:			
					4 mm	ו:		
					8 mm	n:		
		Cartridge	_		Other:			
5.b	. FORMA	TTING / COMPRESSION:						
		Number of Cylinders:						
		Number of Sectors:						
		Compression:	Ye	s:			No:	
		Technique Used: _						
6.	EXCHA	NGE SPECIFICATION:						
		DIGEST Edit	ion:		[Date:		

Encl ASR Marc	osure 10 to P Edition 1.2 ch 1995				Annex I	D – Volume T	DIGEST Part 2 Edition 1.2 January 1994 ransmittal Form
		Annex A	A ISO 82	211:			
		Annex E	B ISO 88	324:			
		Annex (C VRF:_				
		Comme	nts:				
7	OPERATING S	YSTEM					
		Unix: _	Syster	n:	Version: _		
		PC / MS	S - DOS		Version: _		
		VAX / V	MS		Version: _		
		Mac O/S	3		Version: _		
		Other:_			Version: _		
9.	Load VOLUME CON	TENTS:					
File	File	Area of	Data	Product	Rei	marks	
No.	Size Name	Coverage	Structure	Туре			
Part	3 Additional	Information					
<u></u>							
10.	REMARKS:						
11	ADDITIONAL I	NFORMATION					